An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery

Guo, Jishu and Liu, Shulin and Zhu, Rui (2023) An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery. Frontiers in Energy Research, 10. ISSN 2296-598X

[thumbnail of pubmed-zip/versions/2/package-entries/fenrg-10-998002-r1/fenrg-10-998002.pdf] Text
pubmed-zip/versions/2/package-entries/fenrg-10-998002-r1/fenrg-10-998002.pdf - Published Version

Download (1MB)

Abstract

Accurate estimation of battery state of charge (SOC) is of great significance to improve battery management and service life. An unscented Kalman filter (UKF) method is used to increase the accuracy of SOC estimation in this paper. Firstly, a battery model that the parameters are identified by using the least squares algorithm is established, which is foundation of the two-order RC equivalent circuit model. Secondly, SOC is estimated by UKF. In order to validate the method, experiments have been carried out under different operating conditions for LiFePO4 batteries. The obtained results are compared with that of the extended Kalman filter. Finally, the comparison shows that the UKF method provides better accuracy in the battery SOC estimation. Its estimation error is less than 2%, which is better than EKF algorithm. An effective method is provided for state estimation for battery management system.

Item Type: Article
Subjects: South Asian Archive > Energy
Depositing User: Unnamed user with email support@southasianarchive.com
Date Deposited: 01 May 2023 06:58
Last Modified: 17 Mar 2025 06:33
URI: http://uploads.submit4manuscript.com/id/eprint/726

Actions (login required)

View Item
View Item