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ABSTRACT 
 

Crop diseases are one of the major threats to global food production. The different crop diseases 
result in significant yield losses, where their effective monitoring and accurate early identification 
techniques are considered crucial to ensure stable and reliable crop productivity and food security. 
Restricting and managing the disease's spread and lowering the cost of pesticides require effective 
plant pathogen monitoring and detection. If not used in the early stages of pathogenesis, traditional 
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techniques such as molecular and serological methods—which are frequently employed for plant 
disease detection—are frequently ineffective. Conversely, drone-based remote sensing methods 
are highly successful in quickly detecting plant diseases in their early stages. Recent advances in 
remote sensing technology and data processing have propelled unmanned aerial vehicles (UAVs) 
into valuable tools for obtaining detailed data on plant diseases with high spatial, temporal, and 
spectral resolution. Drones have many potential uses in agriculture, including reducing manual 
labor and increasing productivity. Recent advances in drones and deep learning-based computer 
vision algorithms to identify crop diseases, providing early warning thereby allowing farmers to 
prevent costly crop failures and improve food production.  

 

 
Keywords:  Crop disease detection; unmanned aerial vehicle; deep learning; precision agriculture; 

image analysis. 
 

1. INTRODUCTION 
 
“One of the biggest risks to the world's food 
supply is plant disease, which has an effect on 
ecosystems, agriculture, economies, and human 
health. This leads to massive yield losses, poor 
crop quality, and even total crop failures, which 
can cause supply chain disruptions, raise food 
prices and possibly cause shortages, and have a 
detrimental effect on food security and the 
standard of living for those involved in agriculture 
and related industries” (Ristaino et al., 2021, 
Chaloner et al., 2021). Therefore, “precise 
detection and reliable diagnostic method for 
identifying the etiological agents of disease are 
essential for conserving time and money by 
preventing or limiting crop damages” (Singh et 
al., 2018). “In the past, diseases were identified 
using conventional techniques, which were 
frequently arbitrary, solely reliant on the 
observer, labor-intensive, and prone to errors” 
(Qin et al., 2021). Hence, a technologically driven 
agricultural revolution is important to permanently 
solve the problems mentioned earlier at a 
reasonable cost with little environmental           
impact.  
 

“The ongoing adoption of new, cutting-edge 
technologies, including sensors, intelligent 
algorithms, Internet of Things (IoT) devices, and 
contemporary machinery, has altered agriculture. 
Robots and intelligent agricultural machinery are 
replacing human labor in the execution of 
technology. There are now intelligent agricultural 
robots and machines that can both identify plant 
diseases early and track their spread over great 
distances” (Cui et al., 2018). “To detect 
agricultural diseases, high-resolution imagery 
gathered from satellites, aircraft, ground-based 
equipment, and drones is utilized. Both satellites 
and aircraft have the ability to quickly cover large 
areas. Nevertheless, drones have better spatial 
and temporal image resolutions than satellites 

and airplanes, and overflight can be affected by 
weather conditions” (Martinelli et al., 2015). 
 
Therefore, “aerial remote sensing using drones 
(Unmanned Aerial Vehicles (UAV) or Unmanned 
Aerial Systems (UAS)) with intelligent visual 
systems is an efficient and inexpensive way for 
farmers to detect crop and plant diseases in 
agricultural fields” (Herrmann et al., 2020). In 
recent years, unmanned aerial vehicles (UAVs), 
or drones, have been increasingly used in 
precision agriculture giving an opportunity to 
bridge the existing gap between satellite remote 
sensing data and field monitoring (Barbedo et al., 
2019). “UAVs cover large areas quickly and 
efficiently and collects high-resolution images in 
real-time” (Neupane and Baysal-Gurel, 2021). 
They can be regularly deployed to monitor crops 
and fly at particular altitudes and angles, 
producing reliable and accurate image data. 
Additionally, UAVs offer a digital record of crop 
health over time, which can be helpful for 
research, analysis, and even insurance claims in 
the event that diseases or severe weather 
conditions cause crop losses (e.g. G. flood, frost, 
drought, etc.). 
 
“Because they can quantify the extent of disease 
outbreaks and detect and identify disease 
symptoms when human assessment is 
inappropriate or unavailable, they are 
revolutionizing traditional methods of disease 
monitoring and treatment in the field of plant 
disease management” (Barbedo. 2018). “UAVs 
allow farmers to make timely decisions regarding 
disease management strategies because they 
can be deployed on a regular basis and provide 
frequent updates on the spatial distribution of 
diseases. Additionally, UAVs can reach places 
that are hard to reach with conventional tools, 
like big fields, dense vegetation, or hilly terrain, 
allowing for thorough disease monitoring 
throughout the agricultural landscape. UAV-
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based imagery offers vital information that can be 
utilized to enhance crop yields, time efficiency, 
and management techniques, all of which 
contribute to more lucrative and sustainable 
farming operations” (Panday et al., 2020). 
 
“Digital (red, blue, and green or RBG), 
multispectral, hyper-spectral, fluorescent, and 
thermal infrared-based imaging sensors coupled 
with effective algorithms mounted on drones can 
efficiently detect, differentiate and quantify the 
severity of the symptoms induced by various 
pathogens under field conditions” (Bauriegel and 
Herppich, 2014). “With their digital, multispectral, 
hyperspectral, thermal, and fluorescence 
sensors, drones can detect plant diseases with 
greater precision and help detect them earlier 
than satellite systems can” (Zhang et al., 2018). 
“Drones' autonomous systems have the ability to 
sample data at different atmospheric heights at 
the same time. Furthermore, forecasting models 
across fields, regions, and even entire continents 
can be quickly developed using these data” 
(Abdulridha et al., 2020). “Lastly, farmers can 
receive the information they need to make 
informed decisions about the prompt 
management of disease. Drone remote sensing 
technology may therefore be very advantageous 
for precision agriculture (Smart Agriculture) due 
to its low cost and high flying flexibility” 
(Yamamoto et al., 2023). “The use of drone 
platforms equipped with various sensors for the 
detection of plant diseases has been the subject 
of numerous studies. In order to effectively detect 
winter wheat yellow rust, for instance, drones 
were fitted with a hyperspectral image sensor” 
(Zhang et al., 2019).  
 
“Drone-collected images must be analyzed using 
efficient algorithms. Because they rely on manual 
feature extraction techniques, which are 
particularly inefficient in complex environments, 
traditional machine learning approaches have 
drawbacks. A promising new substitute for 
improving computer vision-based systems for 
autonomous crop disease monitoring is deep 
learning algorithms. They are capable of 
autonomous feature extraction without human 
help, giving farmers information that can raise 
crop yields and save treatment expenses” 
(Abbas et al., 2023). Currently, a lot of research 
is focused on using deep learning algorithms, 
computer vision techniques, and drone-based 
platforms to accurately and early diagnose a 
wide range of plant diseases (Tallapragada et al., 
2011). “Even though drones are very effective, 
inexpensive, flexible, precise, and fast at the field 

level, their short flight times make them 
unsuitable for gathering data over wide areas, 
and they can't carry heavy sensors. Therefore, 
selecting the right drone and choosing the 
sensors, software, algorithms, and drone settings 
are essential to getting the best results” 
(Christiansen et al., 2017). 
  
Acknowledging the importance of drones in crop 
disease detection and monitoring, a review is 
presented discussing the methods for crop 
disease detection, novel approaches in crop 
disease detection and applications of drone for 
crop disease detection and monitoring using 
deep learning algorithms. 
 

2. METHODS 
 

The methods for crop disease detection are 
categorized into direct and indirect methods 
(Mahlein, 2019). Known as "Old Generation" 
techniques, direct methods comprise 
conventional techniques such as incubation, 
microscopy, and symptomology, as well as 
molecular diagnostic techniques (e.g. serological 
techniques, loop-mediated isothermal 
amplification (LAMP), recombinase polymerase 
amplification (RPA), polymerase chain reaction 
(PCR), rapid fragment length polymorphisms 
(RFLP), real-time PCR, and point-of-care 
diagnostic techniques (Mahlein, 2016). These 
techniques' slowness and low capacity make 
them unsuitable for field use, delaying early 
disease outbreak detection and response. It is 
necessary to develop a rapid and highly accurate 
method for the early detection of plant diseases 
in order to successfully prevent and control future 
outbreaks. Conventional approaches typically 
evaluate the pathogens' outward manifestations 
and distinctive disease symptoms. Temporal 
fluctuations may have an impact on the 
assessment of disease symptoms, which is 
carried out by qualified professionals. 
Furthermore, “conventional approaches rely 
entirely on personal experience, and they only 
become accurate and trustworthy when the 
standards and procedures for evaluation are 
appropriately adhered to. Observation of the 
pathogen inoculum is necessary for microscopic 
identification (e.g. G. fruiting bodies, spores, and 
mycelia). Specific dichotomous keys and 
identification manuals are available for 
microscopic methods; however, this method is 
too time-consuming because the pathogens must 
be cultivated on artificial selective media before 
identification can take place” (Chen et al.,          
2018).  
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“In order to detect and identify phytopathogens 
that can be used directly in the greenhouse or 
the field, quarantine departments and research 
institutes frequently employ molecular and 
serological methods. For instance, a lateral flow-
through version of ELISA is frequently used to 
evaluate the presence of the potato viruses 
Phytophthora infestans, Ralstonia salanacarum, 
Ervinia amylovora, Papillus mosaic virus, and 
tomato mosaic virus” (Franceschini et al., 2017). 
“The time commitment and need for skilled 
operators are two disadvantages of molecular 
and serological methods. Despite their high 
sensitivity, accuracy, and efficacy, these 
techniques are sadly unreliable when plant 
pathogens are asymptomatic and when tracking 
cryptic pathogens that have infiltrated plants 
before manifesting symptoms” (Torres-Sánchez, 
2013).  
 
The "New Generation" or indirect methods 
basically takes advantage of stress-based 
detection methods like drone spectroscopy and 
imaging, as well as biomarker-based methods 
like metabolite profiling from plant–pathogen 
interactions” (Qin et al., 2013). “In contrast to 
molecular, serological, and microbiological 
diagnostic techniques, a number of indirect 
methods have recently been introduced, 
especially in drones, that can estimate disease 
more accurately. Drones have been equipped 
with sensors to measure fluorescence, 
temperature, and reflectance. Numerous sensor 
types—including RGB, multispectral, 
hyperspectral, thermal, and fluorescence—have 
been developed and are emerging instruments 
for the identification, detection, and 
measurement of plant diseases” (Kuska et al., 
2015, Bleecker and Kende, 2000). “Sensors are 
the essential parts of any drone because they 
enable it to navigate, identify, and locate possible 
crop diseases based on visual data. They also 
provide a map of the crop condition that farmers 
or other machines working with the drones can 
use to perform a variety of tasks on their own 
with little to no human assistance. Multispectral 
and hyperspectral images significantly increase 
the precision and application of disease 
diagnosis. Nevertheless, there are many 
obstacles to overcome when putting a 
hyperspectral data acquisition protocol into 
practice. Spectral reflectance may be influenced 
by a number of factors, including technical 
attributes (brightness, resolution, etc.). conditions 
of sample preparation (field or laboratory), and 
sample properties (size, texture, humidity, etc.). 
Throughout crop development and infection, 

more research on reflectance using crop 
vegetation indices is required. Alongside RGB 
and hyperspectral imaging, thermal sensors are 
especially useful for detecting plant diseases. 
The main driving force is the fact that leaf 
temperature serves as a valuable gauge of plant 
health” (Bleecker and Kende, 2000). 
 
“Identification of plant diseases and other 
aspects of agricultural monitoring at the plot level 
have been made much easier by drones. It is 
possible to deploy a drone with numerous 
cameras. Machine learning algorithms are 
applied to the taken images in order to rapidly 
and precisely classify crop health. Drones are 
therefore becoming more popular since they can 
provide useful information on soil and the upper 
part of plants across a wide spectrum through 
spectral imaging. Based on camera sensors 
mounted on drone platforms, remote sensing 
systems can be divided into two basic 
categories: drone type and camera sensor type. 
One of the most important and useful forms of 
data that can improve the agricultural sector is 
drone-based aerial imagery. When choosing 
drone platforms and sensor types, the intended 
application's objective and the type of crop are 
usually taken into account” (Bauriegel and 
Herppich, 2014). “The detection of any change in 
the optical characteristics of plants is the 
foundation of these remote sensing techniques. 
In essence, they identify any alteration in plant 
physiology brought on by biotic or abiotic 
stressors, transpiration rates, plant density, 
morphology, and variations in solar radiation 
among plants. Remote sensing platforms are 
crucial to the implementation of precision 
agriculture because of their many benefits, 
including high spatial resolution in contrast to 
satellite remote sensing, high efficiency, low cost, 
and versatility. Through the use of site-specific 
fungicide applications, this technique improves 
the efficacy of disease management by enabling 
the timely and accurate detection of plant 
diseases and disorders at the field level” 
(Barbedo, 2018).  
 
“Numerous plant disease images can be taken 
directly and in real-time, enabling the use of 
algorithms to track the occurrence of particular 
plant diseases. It is also possible to trace the 
movement of plant pathogens or their products 
from tens to hundreds of meters above crop 
fields” (Zhang et al., 2018). “Sensor-equipped 
drones can measure morphological and spectral 
data, including canopy surface profiling and plant 
height. Even though super-resolution techniques 
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have recently been developed that can create a 
high-resolution image from one or more low-
resolution images, the captured images at higher 
altitudes typically have low spatial resolution, 
making it challenging to detect features of 
disease lesions at the level of plant organs” 
(Panday et al., 2020). 
 
“Plant morphological information is acquired 
through two main methods i.e., LiDAR (Light 
Detection and Ranging) and Structure-from-
Motion (SfM) photogrammetry” (Christiansen et 
al., 2017). “To determine an object's position, 
LiDAR measures the distance between the 
sensor and the ground. Through the crop 
canopy, its beams can transmit data about the 
ground surface, plant density, and crop structure. 
As drones fly over the fields, SfM 
photogrammetry gathers pictures from various 
angles. With the use of high-resolution digital 
cameras, phenotypic traits of the plant 
population, including individual height, lodging, 
developmental stages, and yield, can be 
measured from the images. An essential metric 
for identifying soil characteristics, plant diseases, 
and plant vigor is spectral reflectance or 
radiance” (Bendig et al., 2014, Geipel et al., 
2014). Drones equipped with multispectral 
(typically from 3 to 6 spectral bands, from 0.4 to 
1.0m) and thermal (typically in the 7-14 m range) 
cameras can monitor crop health, identify 
symptoms of biotic and abiotic stressors, 
estimate biomass and yield, and detect diseases 
in the fields. One or a few broad near-infrared 
(NIR) bands can be detected by digital cameras 
(Yang et al., 2014). Hyperspectral cameras, 
which measure narrow bands with tens to 
hundreds of spectral bands, require additional 
space and payload capacity even though they 
have been reduced for drone use (Shi et al., 
2016, Rango et al., 2006, Laliberte et al., 2011). 
 

3. NOVEL APPROACH TO DETECT CROP 
DISEASES - DRONES 

 
“Plants can be affected simultaneously by 
several plant pathogens, such as nematodes, 
fungi, viruses, viroids, bacteria, and 
phytoplasmas. There are several novel 
approaches which have been used that can 
rapidly, easily, and reliably detect plant 
pathogens at pre-symptomatic to early stages of 
plant diseases. This method includes Lateral flow 
microarrays” (Carter and Cary, 2007), Analysis of 
Volatile Organic Compounds (VOCs) as 
biomarkers (Baldwin et al., 2006), remote 
sensing (RS) drone usages (De Jong et al., 

2004) electrochemistry (Goulart et al., 2010), 
Phage display (Ellington and Szostak, 1990) and 
biophotonics (Ahmed et al., 2008). 
 
“Plant pathogens can be quickly identified using 
lateral flow microarrays (LFM), a hybridization-
based nucleic acid detection technique that 
employs an easily observable calorimetric signal. 
Nevertheless, this approach relies on the 
presence of robust and trustworthy pathogen and 
host biomarkers identified by transcriptomics and 
metabolomics techniques” (Degefu et al., 2016). 
“Volatile Organic Compounds (VOCs) are a class 
of intriguing plant metabolites that are ideal for 
assessing the health of plants as biomarkers. For 
a variety of biological and ecological reasons, 
plants are known to release volatile organic 
compounds (VOCs) into the immediate 
environment. Growth, defense, survival, and 
communication with other nearby and/or related 
organisms are all attributed to these substances” 
(Bleecker and Kende, 2000).  
 
“Phage display, biophotonics, and 
electrochemistry are additional methods. Using 
phage display technology, ligands that attach to 
particular biological molecules can be found. To 
identify plant diseases, the ligands can be 
employed as immunogens or antigens. The 
ligands could be fragments of antibodies or 
peptides. Signal transduction and biorecognition 
are the foundations of the electrochemistry and 
biophotonics techniques. The foundation of 
optical biosensors is the way that chemical or 
biological processes cause light to be absorbed 
or emitted. On the other hand, biochemical 
reactions that result in electron transfer in plant 
sap or any other solution are the foundation of 
electrochemical biosensors. The fundamental 
idea behind these plant disease detection 
techniques is that a particular antibody 
recognizes a particular antigen to create a stable 
complex” (Luppa et al., 2001). These 
biophotonics-based sensors can be used to 
rapidly detect plant disease at the asymptomatic 
stage in the orchards and field conditions.  
 
“The foundation of remote sensing (RS) is the 
measurement of electromagnetic radiations that 
are emitted, reflected, or backscattered from the 
target object on the surface. The targeted object 
is not physically touched in order to obtain the 
information. RS measurements are therefore 
referred to as non-contact measurements” (Jong, 
2004). “Since RS is a noncontact method, it is 
used with portable instruments and a variety of 
platforms, including drones, that sense the health 
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of the plants and gather data. Passive sensors 
are widely used to sense information about the 
health of plants. While passive sensors measure 
the reflected solar radiation in the visible, near-
infrared, and shortwave portions of the 
electromagnetic spectrum, active sensors 
measure the reflected radiation from diseased 
plants. Since plant leaves release energy 
through fluorescence in addition to reflecting, 
transmitting, and absorbing radiation, RS is used 
to track changes in plant health” (Apostol et al., 
2003) or thermal emission (Cohen et al., 2005). 
“Plants contain a variety of pigments that absorb 
light in particular electromagnetic spectrum 
regions. Chlorophyll pigments in plants, for 
instance, absorb light in the visible spectrum 
between 400 and 700 nm. Consequently, the 
amount of radiation absorbed by plant pigments 
and the amount of radiation reflected by plants 
are inversely correlated. Variables like the leaf 
area index (LAI), chlorophyll content, or surface 
temperature alter when a plant is infected by a 
pathogen or experiences abiotic stress. These 
alterations, which differ from those of healthy and 
unstressed plants, are referred to as spectral 
signatures” (Meroni et al., 2010, Witten and 
Frank, 2002). “Some disadvantages of RS 
include the high cost of drones and the need for 
specialized professionals to collect and analyze 
data on plant diseases. Despite the existence of 
protocols, they focus on a limited number of 
valuable crop diseases. With recent 
advancements in satellite sensor spatial 
resolution and plant disease data acquisition 
costs, RS is a promising tool for combining with 
conventional plant disease techniques. Drones 
are now equipped with tiny, low-cost, high-
resolution spatial and spectral sensors to monitor 
crop diseases at the farm level” (Martinelli, 2015, 
Khanal et al., 2017). Drone imaging offers 
interesting advantages over RS. Acquiring 
images using drones has become a common 
practice because installing onboard digital 
cameras is very easy (Al-Saddik et al., 2019). 
 

4. DRONE AND DEEP LEARNING 
ALGORITHMS - TOOLS TO DETECT 
AND MONITOR CROP DISEASES 

 
“Deep learning models have been developed and 
applied to the problem of plant disease 
identification in drone images in an effort to get 
around the limitations of traditional machine 
learning. Deep learning-based computer vision 
techniques have shown encouraging results in 
agriculture over the last ten years” (Zhang et al., 
2021, Su et al., 2020). “Crops that are diseased 

may lose fruit, develop twisted leaves or patches, 
or change color. Deep learning algorithms may 
therefore be the best choice for identifying these 
illnesses. The three primary computer vision-
based tasks that can enhance crop disease 
identification from drone imagery and be applied 
to plant disease identification are image 
classification, object detection, and image 
segmentation. Image classification is the process 
of classifying an image by determining whether 
the desired disease is present throughout the 
entire input image. Typically, the classification 
task is used to detect diseases at the leaf level. 
On the other hand, object detection seeks to 
identify the class and exact location of the 
targeted disease within an input image by 
constructing a bounding box around each 
disease that is detected. The deep learning 
algorithm process for disease detection and 
classification using drone images is as follows: 
Gathering information about the specific ailment 
affecting the target plant by determining an 
appropriate drone height for flight; Data 
preprocessing tasks like labeling, enhancement, 
tidying up, segmentation, and vegetative index 
formation; Employment of models such as VGG 
or Res Net for picture categorization, Faster-R-
CNN or YOLO for object recognition, and U-Net 
or Seg-Net for picture segmentation; and Model 
training/validation and assessment” (Zhang et al., 
2021, Su et al., 2020).  
 
The potential for identifying plant diseases has 
recently drawn a lot of attention to the application 
of deep learning algorithms to the analysis of 
drone-collected images. In order to overcome the 
drawbacks of more traditional techniques, 
specifically Convolutional Neural Network (CNN) 
algorithms, recent research on crop disease 
identification using drone photography has 
mainly relied on deep learning models. 
Enhancing the yield of staple crops like wheat, 
maize, potatoes, and tomatoes is the main goal 
of this research. For example, Zhang et al., 2021, 
created numerous deep learning-based 
computer vision models to detect yellow rust 
disease and mitigate its destructive impacts. 
They proposed a novel semantic segmentation 
method based on the U-Net model to identify 
wheat crop patches afflicted with yellow rust 
disease using multispectral data collected via a 
UAV platform. Three modules—the Content-
aware Channel Re-weight Module (CCRM), the 
Irregular Decoder Module (IDM), and the 
Irregular Encoder Module (IEM)—are 
incorporated as improvements into the 
fundamental U-Net architecture. The authors 
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examined the impact of input data format on the 
deep learning model's ability to accurately 
identify wheat plants infected with yellow rust. 
The proposed Ir-Unet model outperformed the 
results of Su et al., 2020, who, using data from 
the Red Edge multispectral camera's five bands, 
only managed to achieve an F1-score of 92%. 
They were able to increase the accuracy to 96–
97 percent by combining various measurements 
of Selected Vegetation Indices (SVIs) with all the 
raw bands. 
 
Liu et al., 2020 found that a BPNN model 
outperformed both SVM and RF, with an overall 
accuracy of 98 percent, when used to track 
Fusarium Head Blight using hyperspectral aerial 
images. Using RGB pictures captured by UAVs, 
Huang et al., 2019, concentrated on 
Helminthosporium Leaf Blotch Disease, a distinct 
wheat disease. The idea was put forth that HLBD 
could be categorized by stage of illness using a 
CNN model based on LeNet. In contrast to a set 
of techniques plus the SVM model, the adopted 
CNN model's accuracy was higher (91.43%) By 
merging the visible and infrared bands from 
drone-collected photos, Kerkech et al., 2020 
created a semantic segmentation system based 
on deep learning to automatically identify mildew 
disease in vineyards using multispectral data, 
RGB photos, and infrared images. Whether a 
particular pixel in an image depicts a sick leaf or 
a grapevine was ascertained using the SegNet 
model. In a similar vein, research on Northern 
Leaf Blight (NLB), which poses a serious risk to 
the maize crop, has been ongoing. Stewart et al., 
2019 employed a DJI Matrice 600 to take RGB 
aerial photos at low altitudes, and then identified 
NLB disease from the photos using an instance 
segmentation technique (Mask R-CNN). The 
proposed method segmented and detected 
individual lesions with an average accuracy of 
96%. 
 
to divide RGB images taken by UAVs into areas 
that are impacted by NLB disease and those that 
are not, Wiesner-Hanks et al., 2021, mixed 
Conditional Random Field (CRF) and 
crowdsourced ResNet-based CNN methods, with 
the CRF classifying each pixel as lesion or non-
lesion and the crowdsourced CNN creating 
heatmaps. They outperformed Wu et al., 2021 
method by using this technique to detect NLB 
disease in maize crops within a millimeter by 
over 2%. RGB photos, infrared images, and 
multispectral data from a UAV integrating the 
visible and infrared bands were processed by a 
deep learning-based semantic segmentation 

system in order to automate the detection of 
mildew disease in vineyards. The SegNet model 
was used to identify if a particular pixel in an 
image was a grapevine or a sick leaf. With the 
use of visible, infrared, fusion AND, and fusion 
OR data, the proposed method achieved 94.41 
percent, 89.16 percent, 88.14 percent, and 95.02 
percent at the grapevine level and 85.13 percent, 
78.72 percent, 82.20 percent, and 90.23 percent 
at the leaf level. (Wu et al., 2021).  
 
For enhancing the identification of unhealthy 
Pinus trees using RGB UAV data, Hu et al., 
2022, combined an AdaBoost classifier with a 
Deep Convolutional Neural Network (DCNN) and 
a Deep Convolutional Generative Adversarial 
Network (DCGAN). With an F1-score of 86.3 
percent and a recall of 95.7 percent, the 
proposed approach outperformed traditional 
machine learning techniques. In contrast, the 
SVM and AdaBoost classifiers had recall rates of 
78.3 percent and 65.2 percent, respectively. One 
of the disadvantages of deep learning models is 
that, depending on the size of the dataset, the 
model's complexity, and the processing power of 
the computer, training can take weeks. 
 
There are either not enough datasets or they are 
not available in large enough quantities for early 
disease detection in plants. Finding out about the 
crop, disease, and pest patterns in the area is 
the first step. Usually, scientists decide to either 
inoculate an experimental greenhouse with the 
fungus that causes the disease (Zhang et al., 
2021, Kerkech et al., 2020). One needs to use 
expensive, specialized equipment and seek 
advice from qualified experts at every stage of 
the data collection process in order to get a 
hyperspectral image (Zhang et al., 2021). 
Furthermore, annotation is necessary when 
generating a new dataset. The annotation of 
different diseases is a task that requires the help 
of agriculture experts because it is beyond the 
capabilities of regular volunteers. Although they 
are not always successful, researchers 
frequently use data augmentation techniques for 
small datasets in an effort to reduce overfitting. 
Data may be skewed after collection due to 
seasonal and regional challenges with various 
crop diseases or because healthy plant samples 
are more valuable than diseased plant samples 
(Zhang et al., 2021, Su et al., 2020). 
 

5. CONCLUSION 
 
To improve crop production and attain food 
security, it is crucial to monitor and identify crop 
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diseases early on in large agricultural fields in a 
timely, accurate, and reliable manner. Numerous 
deep learning algorithms and remote sensing 
technologies have been developed in recent 
decades with promising results for the early 
detection of crop diseases. Deep learning-based 
algorithms for semantic segmentation, object 
detection, and image classification are efficient 
means of preventing various diseases that 
destroy agricultural crop fields and lower food 
productivity early on. In this paper, we discussed 
the latest developments in UAV technologies, 
such as deep learning-based computer vision 
algorithms and remote sensing platforms, to 
detect crop diseases early and stop their 
widespread spread. Precision agriculture can 
benefit from effective monitoring and detection 
capabilities provided by the use of drones in crop 
disease assessment. Timely disease detection is 
made possible by drones' enhanced 
accessibility, better coverage, and quick data 
collection. We can use drones to collect useful 
data on plant health indicators thanks to 
sophisticated sensors and imaging techniques. 
To find patterns in the disease and gauge its 
severity, these data can be processed using 
analytics and deep learning algorithms. Drone 
integration into plant disease assessment 
systems enables targeted intervention, early 
detection, and real-time monitoring. Drones can 
support precision agriculture techniques, 
minimize yield losses, minimize the need for 
chemical treatments, and promote sustainable 
farming methods. 
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