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Abstract

The brain uses its intrinsic dynamics to actively predict observed sensory inputs, especially

under perceptual ambiguity. However, it remains unclear how this inference process is

neurally implemented in biasing perception of ambiguous inputs towards the predicted per-

cepts. The process of perceptual inference can be well illustrated by the phenomenon of bis-

table apparent motion in the Ternus display, in which subjective perception spontaneously

alternates between element motion (EM) and group motion (GM) percepts depending on

whether two consecutively presented frames are grouped over time or not. The frequency of

alpha-band oscillations has long been hypothesized to gate the temporal window of percep-

tual grouping over time. Under this hypothesis, variation in the intrinsic alpha frequency

should predict perceptual outcome of the bistable Ternus display. Moreover, we hypothe-

size that the perception system employs this prior knowledge on intrinsic alpha frequency to

resolve perceptual ambiguity, by shifting perceptual inference towards the predicted per-

cepts. Using electroencephalography and intracranial recordings, we showed that both

between and within subjects, lower prestimulus alpha frequencies (PAFs) predicted the EM

percepts since the two frames fell in the same alpha cycle and got temporally integrated,

while higher PAFs predicted the GM percepts since the two frames fell in different alpha

cycles. Multivariate decoding analysis between the EM percepts with lower PAFs and the

GM percepts with higher PAFs further revealed a representation of the subsequently

reported bistable percept in the neural signals shortly before the actual appearance of the

second frame. Therefore, perceptual inference, based on variation in intrinsic PAFs, biases

poststimulus neural representations by inducing preactivation of the predicted percepts. In

addition, enhanced prestimulus blood-oxygen-level–dependent (BOLD) signals and net-

work dynamics in the frontoparietal network, together with reduced prestimulus alpha

power, upon perceiving the EM percepts suggest that temporal grouping is an attention-

demanding process.
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Author summary

Our subjective perception of the external world is constantly shaped not only by sensory

inputs but also by the real-time internal status of our own brain. Upon facing an ambigu-

ous sensory input, our brain employs its intrinsic dynamics to bias perception towards the

predicted percept, resolving in this manner perceptual ambiguity. However, it remains

poorly understood how this process is implemented in the brain. Using electroencephalo-

gram and functional MRI in healthy participants and intracranial recordings in epileptic

patients, we show that neural rhythms in the alpha frequency (8–13 Hz)—one of the pre-

dominant neural oscillations in the visual system—gate the time window for perceptual

grouping: two consecutively presented frames in a constant ambiguous dynamic visual

scene will be temporally integrated if they fall in the same alpha cycle but spatially inte-

grated if they fall in different alpha cycles. Moreover, our brain employs the real-time

speed of its intrinsic alpha oscillations to actively predict the most possibly observed per-

cepts by inducing preactivation of neural representations that resemble the one evoked by

the actual stimuli, even before it is presented.

Introduction

The brain is increasingly being understood as engaged in probabilistic unconscious perceptual

inference to actively predict and explain observed sensory inputs, which helps to resolve ambi-

guity in sensory signals [1–6]. Therefore, our perception of the world is not simply based on

our sensory inputs. Instead, what we perceive is heavily altered by contextual information [7–

10] and expectations [11–14]. Besides context and expectation, intrinsic neural oscillatory sig-

natures and organization status of the brain dramatically modulate the perceptual outcome of

ambiguous stimuli [15–19]. However, it remains unclear how perceptual inference employs

intrinsic brain activity to bias the perception of ambiguous sensory information towards pre-

dicted percepts with the progress of time.

The process of perceptual inference can be well illustrated by the phenomenon of bistable

apparent motion in the Ternus display [20,21], in which subjective perception spontaneously

alternates between spatial and temporal grouping interpretations of a constant ambiguous

dynamic visual scene (Fig 1). The human brain adopts two major strategies of perceptual

grouping to achieve perceptual coherence along the spatial and temporal dimension, despite

the ever-changing visual inputs and the resulting fragmentary nature of the retinal image

across space and time [22–26]. Spatially, grouping local visual elements into a holistic percept

allows us to perceive scenes and objects as a whole rather than a meaningless collection of

unconnected parts [27–29]. Temporally, successive discrete visual events unfolding in time

could be grouped based on temporal proximity to perceive the stability of object identity and

location [24,30,31]. In the classical Ternus display (Fig 1A), two horizontally spaced disks

appear at shifted locations in two successive frames. Depending on the interframe interval

(IFI), observers typically report two distinct percepts [32,33]. Temporal grouping is explicitly

dominant at short IFIs: the central overlapping disks between the two frames are temporally

integrated as one single disk, and the visual persistence of the central overlapping disk makes

the lateral disk in frame 1 appear to jump across the central disk, i.e., element motion (EM)

(Fig 1A, upper panel; S1 Video). On the other hand, spatial grouping is explicitly dominant at

long IFIs: the two disks within each frame are spatially grouped and perceived as moving

together as a group, i.e., group motion (GM) (Fig 1A, lower panel; S2 Video). Most critically,

when the IFI reaches a certain psychophysical threshold, the Ternus display becomes
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ambiguous/bistable: the report of EM (temporal grouping) versus GM (spatial grouping) per-

cepts randomly fluctuates on a trial-by-trial base, resulting in comparable proportions of GM

and EM percepts (Fig 2A) [24,33]. Interestingly, the typical transition IFI threshold between

temporal and spatial grouping in the Ternus display occurs around a time window of approxi-

mately 100 ms [33,34] (see Fig 2A and 2B), which corresponds to the average cycle of occipital

alpha-band oscillations, with peak frequencies ranging between 8 and 13 Hz (i.e., 70- to

120-ms cycle).

The alpha oscillations, as one of the most predominant oscillations in the visual system, are

considered as one underlying mechanism of perceptual cycles by gating the transient temporal

windows of perception [35–39]. Accordingly, accumulating evidence shows that the phase of

ongoing alpha oscillations reflects cyclic shifts of neuronal excitability [40–42] and predicts

not only behavioral performance [15,43–45] but also a variety of subsequent neural signals

related to stimulus processing [16,46,47]. Besides the phasic effects, the peak frequency of

alpha-band oscillations predicts reaction times (RTs) [48] and variations in temporal resolu-

tion of perception [36,49–51]. The phasic and frequency effect of alpha oscillations lead to the

long-standing hypothesis that the alpha cycle provides the discrete temporal window of per-

ceptual grouping: whether two stimuli are integrated into a single percept or segregated into

separate events depends on whether they fall in the same cycle of the alpha oscillation [52,53].

In terms of the Ternus paradigm, if the two frames fall in the same alpha cycle, they will be

temporally integrated, resulting in the EM percepts; if the two frames fall in different alpha

cycles, they will be segregated temporally, and spatial grouping will take place separately in the

two frames, resulting in the GM percepts. Especially when the sensory inputs become ambigu-

ous at the transition IFI threshold (Fig 1B), we hypothesize that the intrinsic prestimulus alpha

frequency (PAF) plays a critical role in determining whether the two frames are grouped over

Fig 1. Schematic demonstration of the temporal and spatial grouping in the Ternus display and their hypothetical relations to the alpha cycles. (A) Upper

panel: explicit EM at the short IFI (50 ms). At the short IFI, the shared central disk between the two frames is temporally grouped as the same object, resulting in

explicit EM percepts. The central disk is perceived to remain still at the central location, and the two lateral disks are perceived to jump from one side to the

other (see also S1 Video). Lower panel: explicit GM at the long IFI (230 ms). At the long IFI, the two disks within each of the two frames are spatially grouped,

respectively, resulting in explicit GM percepts. The two disks in the first frame are perceived to move together as a group towards the second frame in a manner

consistent with the physical displacement (see also S2 Video). (B) Upper panel: bistable EM percepts at the threshold IFI. The lower the PAF, the higher

possibility the two consecutively presented frames will fall in the same alpha cycle, resulting in the EM percepts. Lower panel: bistable GM percepts at the

threshold IFI. The higher the PAF, the two frames will more likely fall in different alpha cycles, resulting in the EM percepts. EM, element motion; GM, group

motion; IFI, interframe interval; PAF, prestimulus alpha frequency.

https://doi.org/10.1371/journal.pbio.3000025.g001
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Fig 2. Behavioral results. (A) Psychometric curves fitted on the psychophysical data for each participant in the EEG experiment. The transition IFI

threshold in each individual subject was defined as the IFI corresponding to the point of 50% reported GM/EM percepts on the fitted logistic

function. All curves fitted well to the selection probability of GM (all R2 values> 0.9). (B) Threshold IFIs derived from the psychophysical

procedure for each participant in the EEG and fMRI experiment, respectively. (C) Accuracy rates of the explicit EM and GM trials averaged across

all the participants in the EEG and fMRI experiment, respectively. (D) Rates of the bistable EM and GM trials averaged across all the participants in

the EEG and fMRI experiment, respectively. (E) RTs relative to the onset of frame 2 for all the experimental conditions in the EEG and fMRI

experiment. The error bars indicate ±1 SEM. �p< 0.05, ��p< 0.01. Underlying data available at https://osf.io/tze94/. EEG, electroencephalography;

EM, element motion; fMRI, functional magnetic resonance imaging; GM, group motion; IFI, interframe interval; RT, reaction time.

https://doi.org/10.1371/journal.pbio.3000025.g002
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time or not, which accordingly affects the codependent spatial grouping process. Specifically

speaking, lower PAFs (i.e., longer prestimulus alpha cycles, Fig 1B, upper panel) allow the two

consecutively presented frames to fall in the same alpha cycle, resulting in the EM percepts,

while higher PAFs (i.e., shorter prestimulus alpha cycles, Fig 1B, lower panel) allow the two

frames to fall in different alpha cycles, resulting in the GM percepts. We thus predict that the

PAF can affect the outcome of bistable perceptual grouping in the Ternus paradigm, with

higher PAFs preceding the bistable GM than EM percepts.

Furthermore, we hypothesize that perceptual inference employs the intrinsic PAFs to pre-

dict the perceptual outcome in the bistable Ternus display. Specifically, the brain generates

predictions towards the GM percepts according to higher PAFs since the higher PAFs make it

more possible for the two frames to fall in different alpha cycles. On the other hand, the brain

generates predictions towards the EM percepts according to lower PAFs since the lower PAFs

make it more possible for the two frames to fall within the same alpha cycle. Under the frame-

work of perceptual inference, combining the specific prediction and forthcoming inputs, per-

ceptual inference towards one specific percept will be made [54–56]. The perceptual inference

is efficient if it is consistent with the subsequently perceived percept but inefficient if inconsis-

tent. We thus predict that the efficiency of the perceptual inference may bias neural representa-

tions of the perceived percepts with the progress of time. In particular, the efficient perceptual

inference may induce the corresponding representation pattern underlying the predicted per-

cepts even before the actual presentation of the stimuli. Alternatively, if perception was based

solely on sensory inputs, one would assume that neural representations underlying the inte-

grated percepts are induced only after the actual presentation of the stimuli. To distinguish

between the above hypotheses, we adopted electroencephalography (EEG) in healthy adults

and intracranial recordings in epileptic patients and used multivariate decoding techniques on

the EEG data to further probe the representational content of neural signals in a time-resolved

manner.

Results

Behavioral performance

In the EEG (n = 17), intracranial (n = 4), and functional magnetic resonance imaging (fMRI)

(n = 18) experiments, participants were asked to report the perceived EM versus GM percepts

after viewing 1) the explicit EM stimuli with the short IFI, 2) the explicit GM stimuli with the

long IFI, and 3) the bistable stimuli with the transition IFI threshold (Fig 1). The transition IFI

threshold, at which equal proportions of EM and GM trials were reported, was determined

individually for each participant prior to the main experiment (Fig 2A; see Materials and

methods). The individual IFI threshold for each participant, estimated by a psychometric func-

tion fitted to the participant’s responses at each of the seven IFIs (see details in Materials and

methods, Figs 2A and S1), was shown in Fig 2B for the EEG and fMRI experiments, respec-

tively. A two-sample t test showed no significant difference between the two experiments in

terms of the group mean IFI threshold, t (33) < 1.

In the two explicit conditions, the mean accuracy rates in the explicit EM and explicit GM

condition were comparable and both above 85% in both the EEG, t (16) < 1, and the fMRI

experiment, t (17) < 1 (Fig 2C). The accuracy rate of the explicit trials was taken as an indicator

of whether a participant could indeed clearly discriminate between the two different types of

percept. Our data indicated that the participants could clearly distinguish the two explicitly dif-

ferent percepts at the short versus long IFIs. RTs, however, were significantly slower in the

explicit EM than the explicit GM condition in both the fMRI experiment (t (17) = 3.06,

p< 0.01) and the EEG experiment (t (16) = 3.73, p< 0.005) (Fig 2E). In the bistable condition,
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there was no significant difference between the bistable EM and the bistable GM conditions in

terms of both the rates of choice (EEG experiment: t (16) < 1, fMRI experiment: t (17) < 1) (Fig

2D) and the RTs (EEG experiment: t (16) < 1, fMRI experiment: t (17) < 1) (Fig 2E). In addi-

tion, behavioral performance of the four epileptic patients with depth electrodes showed simi-

lar patterns as the healthy participants (see S1 Table).

Neurophysiology results

PAF predicted the outcome of bistable perceptual grouping. The EEG data showed a

clear peak in the alpha-band amplitude (8–13 Hz) (Fig 3A) and a posterior scalp distribution

of alpha amplitude during the prestimulus period (–800 to 0 ms relative to the presentation of

the first frame) for all the participants (Fig 3B). These results guided further analysis by confin-

ing the frequency of interest to 8–13 Hz and the region of interest to the posterior electrodes

(Oz, O1, O2, POz, PO1, PO2, PO3, PO4).

To understand the relationship between the alpha frequency and the perceived percepts of

the bistable perceptual grouping, we first calculated the between-subject correlation between

the individual transition IFI thresholds and the individual prestimulus peak alpha frequency.

The individual peak alpha frequency was calculated based on the maximal prestimulus poste-

rior alpha amplitude of each participant [57]. Subsequently, the Pearson correlation between

the individual alpha frequency and the individual transition IFI threshold was calculated. The

two measures were significantly correlated (n = 17, r = –0.7187, p = 0.0012) (Fig 3C). The sig-

nificant between-subject correlation suggests that the faster the alpha oscillations (i.e., higher

alpha frequencies and shorter alpha cycles) in an individual, the shorter the IFI required for

the two frames to fall in different alpha cycles, and thus it takes shorter IFI for the later GM

percepts at the longer IFIs to take dominance over the earlier EM percepts at the shorter IFIs.

On the other hand, the slower the alpha oscillations (i.e., lower alpha frequencies and longer

alpha cycles) in an individual, the longer the IFI required for the two frames to fall in different

alpha cycles, and thus it takes longer IFIs for the transition from the earlier EM percepts to the

later GM percepts. In addition, under the hypothesis that the alpha frequency gates the time

window of temporal integration, one may expect that an increase in the alpha cycle length will

increase the threshold IFI by the same amount. We accordingly tested whether the slope of the

fitted line between the individual alpha cycle length and the individual transition IFI threshold

(S2 Fig), which represents an increased transition threshold IFI per increment of the alpha

cycle, was significantly different from the hypothetical slope of 1. The results showed that the

slope of the linear regression does not significantly differ from 1, t< 1, indicating that an

increase in the alpha cycle was neither significantly higher nor lower than an increase in the

transition threshold of the IFI.

Moreover, if, as we predicted, slower alpha cycles lead to higher possibilities that the two

frames will fall in the same alpha cycle (i.e., temporal grouping, Fig 1B, upper panel) while

faster alpha cycles lead to higher possibilities that the two frames will fall in different alpha

cycles (i.e., spatial grouping, Fig 1B, lower panel), trial-by-trial variance in the PAF within each

subject should predict the outcome of the bistable perceptual grouping, with higher PAFs on

the bistable GM (spatial grouping) than the bistable EM (temporal grouping) trials. To test the

above prediction, we analyzed time-resolved changes in the prestimulus derivative of the

phase angle time series (see Materials and methods), which corresponds to the instantaneous

frequency of a signal within a band-limited range [58]. For each subject, we calculated and

compared the instantaneous alpha frequency in the prestimulus window (–800 to 0 ms relative

to the presentation of the first frame, and no poststimulus signal was included in the analysis)

for the bistable GM and the bistable EM percept trials, respectively. Consistent with our
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predictions, the results showed that the PAF was significantly higher in the bistable GM than

bistable EM trials, from about –550 to –210 ms relative to the presentation of the first frame,

cluster-based correction (p< 0.05) (Fig 3D).

To further test the consistency of the above PAF effect and its precise anatomical origins,

we collected intracranial data from four epileptic patients with depth electrodes. For each

patient, according to the present frequency of interest at 8–13 Hz, we computed the alpha

amplitude for each and every contact and then selected the first 10 contacts with the strongest

alpha amplitude. The anatomical locations of these selected contacts were mostly located in

the occipital and parietal regions (Fig 4), which was consistent with the posterior scalp distri-

bution of alpha in the EEG experiment (Fig 3B).

We subsequently performed further analysis on the within-subject trial-by-trial variance of

instantaneous PAF in the selected contacts. The instantaneous PAF of the bistable EM and

GM trials was further computed for each of the 10 contacts with the strongest alpha power,

using similar methods as those for the EEG data analysis. The results showed that most of the

selected contacts exhibited the trend of higher PAF in the bistable GM than bistable EM trials

(Fig 4). For all four patients, in the group mean of the 10 contacts with maximal alpha ampli-

tude, the PAF was significantly higher for the bistable GM percepts than the bistable EM per-

cepts using cluster-based permutation test (Fig 4A, patient 1: from about –500 to –110 ms

relative to the presentation of frame 1; Fig 4B, patient 2: from about –470 to –180 ms; Fig 4C,

patient 3: from about –600 to –250 ms; and Fig 4D, patient 4: from about –410 to –300 ms,

cluster-based correction, p< 0.05).

PAF biased poststimulus neural representation by inducing preactivation of the subse-

quently reported bistable percepts. We subsequently investigated how the PAF biases the

neural representations of the spatially versus temporally integrated percepts. The working

hypothesis (Fig 5A) is that lower PAFs will result in efficient perceptual inference on the EM

percepts and inefficient perceptual inference on the GM percepts. On the other hand, higher

PAFs will result in efficient perceptual inference on the GM percepts and inefficient perceptual

inference on the EM percepts. Accordingly, for the bistable GM trials with higher PAFs and

the bistable EM trials with lower PAFs, we expected to observe biased neural representations

of the predicted percepts in the neural signals not only after but also before the actual stimulus

onset. To test the above hypothesis, we employed the temporal generalization method, a time-

resolved decoding approach, to characterize how neural representations are dynamically trans-

formed with the progress of time [59]. The classifiers used in the decoding analysis rely on

boundaries through the high-dimensional activation space that maximally separate patterns of

neural activity underlying different percepts (i.e., bistable EM versus bistable GM). Classifier

performance should be better if the two representations in the activation space are clearly sepa-

rated [60] (Fig 5C).

Fig 3. Relationship between the PAF and bistable perceptual grouping. (A) The normalized amplitude obtained

through an FFT from all the bistable trials (from –800 to 0 ms relative to the onset of the first frame) collapsed over all

electrodes in all the participants revealed a clear peak at the alpha frequency. The gray shading indicates ±1 SEM. The

light gray rectangle indicates the selected frequency band. (B) The amplitude topographic map of the selected alpha

frequency band (8–13 Hz) revealed a clear posterior scalp distribution. The selected posterior electrodes are indicated

with white dots. (C) The frequency of occipital alpha in each individual subject, derived from the prestimulus alpha

activity, was significantly correlated with the individual transition IFI threshold. Dashed lines indicate 95% confidence

intervals around the linear fit line. (D) Within-subject analysis of the instantaneous PAF revealed higher alpha

frequency preceding the bistable GM trials than the bistable EM trials. Significant time points are indicated by the

horizontal black bar (cluster-based correction, p< 0.05). Shaded regions denote ±1 within-subjects SEM. Underlying

data available at https://osf.io/tze94/. a.u., arbitrary unit; EM, element motion; FFT, Fast Fourier Transform; GM,

group motion; IFI, interframe interval; PAF, prestimulus alpha frequency; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3000025.g003
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For the EEG data, all the bistable trials were first sorted according to the PAF and then half

split into the high PAF and the low PAF sessions (see details in Materials and methods). Subse-

quently, the bistable EM and GM trials in the high PAF session were selected as the high PAF

EM and GM trials, respectively (Fig 5B). Similarly, the bistable EM and GM trials in the low

PAF session were selected as the low PAF EM and GM trials, respectively (Fig 5B). To exclude

the potential confounds caused by the different number of trials, the trial number in each of

the above four types of trials was matched (see details in Materials and methods). According to

our hypothesis, the high PAF GM trials and the low PAF EM trials were designated as the effi-

cient inference condition, while the low PAF GM trials and the high PAF EM trials were desig-

nated as the inefficient inference condition (Fig 5A). For each condition, we calculated the

temporal generalization matrix, which contained the decoding performance between the bis-

table EM and bistable GM trials over time (quantified by the area under the receiver operator

characteristic, i.e., AUC, using the leave-one-out cross-validation method). If the process of

perceptual integration simply depends on sensory inputs, perceptual grouping between the

two frames should happen only after the actual presentation of the second frame. We thus

time locked the temporal generalization matrix to the presentation of the second frame to

investigate how neural representations of the spatially versus temporally integrated percepts

were encoded with the progress of time relative to the presentation of frame 2.

For the efficient inference condition, neural representations of the bistable EM versus GM

percepts could be successfully discriminated both before and after the onset of the second

Fig 4. PAF effect in the four epileptic patients. Anatomical locations of the first ten contacts with the largest alpha (8–13 Hz) power from each of four patients (A, B, C,

and D). Precise anatomical regions of the 10 selected contacts are marked on the coronal T1 slices of individual brains. Instantaneous PAF was calculated for the bistable

EM and bistable GM trials, respectively, for each selected contact, and averaged across all the contacts. The alpha frequency preceding the bistable GM trials was higher

than that preceding the bistable EM trials in most of selected contacts in each patient. In the averaged results, significant time points are indicated by horizontal black bars

(cluster-based correction, p< 0.05). Shaded regions denote ±1 SEM. Underlying data available at https://osf.io/tze94/. EM, element motion; GM, group motion; PAF,

prestimulus alpha frequency; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3000025.g004
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frame (Fig 5D, from –280 ms to 400 ms relative to the second frame, cluster-based correction,

p< 0.05). For the inefficient inference condition, however, the two types of percept could be

successfully discriminated only after the onset of the second frame (Fig 5E, from 100 ms to 400

ms after the second frame, cluster-based correction, p< 0.05). By directly comparing the

decoding performance between the efficient versus inefficient inference condition, we found

significantly better decoding performance in the efficient than inefficient inference condition,

not only after but also before the onset of the second frame (a significant cluster from training

time –150 to 100 ms and decoding time –280 to 160 ms, cluster-based correction, p< 0.05)

(Fig 5F). In particular, the neural signals 0–100 ms after the onset of frame 2 could be

Fig 5. Hypothesis and results of decoding results of the EEG data. (A) Hypothesis on the efficient versus inefficient inference. Upper: predictions towards the GM

percepts will be generated based on higher PAFs since it is more possible for the two frames to fall in different alpha cycles. Lower: predictions towards the EM percepts

will be generated based on lower PAFs since it is more possible for the two frames to fall within the same alpha cycle. Conjointly considering the specific prediction and

the forthcoming bottom-up inputs, perceptual inference towards one specific percept will be made. The perceptual inference is defined as efficient if it is consistent with

the perceived percept and inefficient if inconsistent. (B) Post hoc trial categorization procedure for the decoding analysis. All the bistable trials were first sorted based on

their PAF values. The bistable trials with a PAF higher than the PAF of the median trial (trial n/2, n = the total number of bistable trials) were considered as the high PAF

trials, while the bistable trials with a PAF lower than the PAF of the trial n/2 were considered as the lower PAF trials. Therefore, conjointly based on the PAF (high versus

low) and the perceptual outcome (EM versus GM), the bistable trials were categorized into the following four types: (1) the high PAF GM trials, (2) the low PAF EM trials,

(3) the low PAF GM trials, and (4) the high PAF EM trials. The former two types of trials were assigned to the efficient inference condition since the prior perceptual

inference based on the PAFs was consistent with the subsequently perceived percept, while the latter two types of trials were assigned to the inefficient inference condition

since the perceptual inference was inconsistent with the perceptual outcome. (C) A hypothetical 2D activation space for the EEG signals representing the bistable EM and

GM percepts. Activation patterns for each percept are projected onto a discriminant axis, which differentiates the two percepts. A decision boundary placed along the axis

allows for classification between the bistable EM and GM percepts. The overlap of the Gaussian distributions reflects “decision noise.” More distant representations

produce less noise and result in higher decoding accuracy. (D) Temporal generalization matrices for the efficient inference condition. (E) Temporal generalization

matrices for the inefficient inference condition. (F) Temporal generalization matrices for the differential contrast between the efficient versus inefficient conditions.

Columns in the images are the time points the classifier was trained, and rows are the time points the classifier was tested. Color values indicate decoding accuracy in

terms of AUC (D, E) or AUC difference (F). The contour with the black line indicates the significant cluster, p< 0.05. (G) Decoding performance over time with training

time 0–50 ms after the onset of frame 2. For the purpose of visualization, the figure shows a row in the temporal generalization matrix in (F) at the training time at which

we see a significant cluster of generalization difference before the onset of frame 2. Significant generalization time points are indicated with horizontal black bars

(p< 0.05). Time 0 indicates the onset of frame 2. Shaded regions indicate ±1 SEM. Underlying data available at https://osf.io/tze94/. AUC, area under the receiver

operator characteristic; EEG, electroencephalography; EM, element motion; GM, group motion; PAF, prestimulus alpha frequency; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3000025.g005
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significantly better generalized to the neural signals 0–280 ms before the onset of frame 2 in

the efficient than inefficient inference condition and vice versa (0–140 ms before frame 2 onset

being generalized to 0–160 ms after frame 2). For demonstration purposes, these generalized

signals were further illustrated, for example, when the decoder was trained 0–50 ms after

frame 2 (Fig 5G): in the efficient inference condition, neural signals from 0 to 220 ms before

frame 2 were similar to those evoked by the actual onset of frame 2. Please note here, the 0–50

ms poststimulus training time window in Fig 5G was just one representative time window

taken from Fig 5F and was not the only significant time window. Instead, the significant effects

extend from 0 to 100 ms after the actual presentation of frame 2 (Fig 5F). Taken together, the

above decoding results suggested that the efficient perceptual inference, based on the intrinsic

PAFs, improved the readout of poststimulus temporally versus spatially integrated representa-

tions by preactivating the percept-like signals even before the actual onset of frame 2.

Reduced prestimulus alpha power for the bistable EM percept. In addition to the alpha

frequency effect, we further tested whether the prestimulus alpha power could potentially

influence the bistable perception. We calculated the prestimulus occipital alpha power, relative

to the onset of the first frame, for the bistable EM and bistable GM trials, respectively (see also

Materials and methods). Significantly lower prestimulus alpha power was found in the bistable

EM than bistable GM trials, from –580 to –220 ms relative to the onset of frame 1 (Fig 6A).

fMRI data: Enhanced prestimulus activity and network dynamics in the frontoparietal

network for the bistable EM percept. For the fMRI data, we first identified the specific neu-

ral substrates underlying the bistable spatially versus temporally integrated percepts by directly

contrasting the bistable EM and GM trials. Compared to the bistable GM trials, the bistable

EM trials induced stronger positive activations in the left intraparietal sulcus (IPS) (Fig 6B,

upper panel, red; S2 Table), and stronger deactivations in the medial prefrontal cortex

(MPFC) of the default-mode network (DMN) (Fig 6B, upper panel, blue; S2 Table). As shown

in the mean parameter estimates extracted from the activated clusters (Fig 6B, lower panel),

neural activity increased in the left IPS and decreased in the MPFC, specifically in the bistable

EM trials.

To further localize the specific neural regions in which prestimulus neural activity predicts

the outcome of bistable perceptual grouping, we compared neural activity in the trials prior to

the bistable EM and GM trials (see Materials and methods). Left inferior parietal cortex and

bilateral inferior frontal gyrus (IFG) showed significantly enhanced prestimulus neural activity

of the bistable EM trials, compared to the bistable GM trials (Fig 6C, upper panel). For exam-

ple, the extracted mean parameter estimates in bilateral IFG showed that prestimulus neural

activity was higher for the bistable EM than the bistable GM trials but was comparable between

the explicit EM and the explicit GM trials (Fig 6C, lower panel; S2 Table). The left inferior pari-

etal cortex showed similar patterns. No significant activations were revealed in the reverse con-

trast, i.e., bistable GM> bistable EM. These results thus suggested that enhanced neural

activity in the frontoparietal network prior to the presentation of the bistable stimuli predicted

the bistable EM percepts.

In addition to the height of prestimulus neural activity, prestimulus network dynamics in

the frontoparietal attention network may play a critical role in predicting the outcome of bis-

table perceptual grouping as well. To address this, we compared the patterns of functional con-

nectivity among the frontoparietal regions prior to the presentation of the bistable EM versus

GM trials. Since the left IPS exhibited specific selectivity towards the bistable EM percepts dur-

ing both the pre- (Fig 6C) and the poststimulus (Fig 6B) period, we used the left IPS as the seed

region to perform the network analysis, focusing on the prestimulus period.

Psychophysiological interaction (PPI) analysis treated prestimulus activity in the left IPS as

the physiological factor and the contrast between the two bistable percepts (bistable EM versus
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bistable GM) as the psychological factor. In this way, we aimed to calculate how prestimulus

changes in the functional connectivity of the left IPS predict the subsequent bistable EM versus

Fig 6. Prestimulus alpha power in the EEG data and pre- and peristimulus neural activity and network dynamics in the bistable trials of the fMRI data. (A)

Occipital prestimulus alpha power was significantly lower in the bistable EM trials than in the bistable GM trials. Significant time points in the prestimulus period are

indicated with the black bar (cluster-based correction, p< 0.05). Shaded regions denote ±1 within-subject SEM. (B) Red: left IPS showed significantly higher neural

activity in the bistable EM than bistable GM trials. Blue: MPFC in DMN was significantly more deactivated in the bistable EM than bistable GM trials. Parameter estimates

in the four experimental conditions were extracted from the activated left IPS (lower panel, left) and the MPFC cluster (lower panel, right). The shaded condition is the

bistable EM condition that drives the significant neural contrasts. The error bars are ±1 SEM. (C) Increased prestimulus neural activity of the bistable EM trials, compared

to the prestimulus neural activity of the bistable GM trials. Left IPS and bilateral IFG were significantly activated. Parameter estimates, indicating the height of neural

activity in the previous trials (Trials N-1) of the bistable and the explicit trials, were extracted from the bilateral IFG. The height of neural activity in the trials prior to the

bistable EM trials was higher than in the trials prior to the bistable GM trials (the two shaded conditions). (D) PPI analysis based on prestimulus neural activity in the left

IPS, with the contrast “bistable EM> bistable GM” as the psychological factor. The left IPS showed enhanced neural coupling with sensorimotor and frontal areas during

the prestimulus period of the bistable EM trials, compared to the prestimulus period of the bistable GM trials. For example, in a representative participant, mean corrected

prestimulus neural activity in the SMA is shown as a function of mean corrected prestimulus activity in the left IPS (i.e., the first principal component from a sphere of 4

mm radius) for the bistable EM trials (red dots and lines) and bistable GM trials (blue dots and lines), respectively. Underlying data available at https://osf.io/tze94/. a.u.,

arbitrary unit; DMN, default-mode network; EEG, electroencephalography; EM, element motion; fMRI, functional magnetic resonance imaging; GM, group motion; IFG,

inferior frontal gyrus; IPS, intraparietal sulcus; MPFC, medial prefrontal cortex; PPI, psychophysiological interaction; SEM, standard error of the mean; SMA,

supplementary motor area.

https://doi.org/10.1371/journal.pbio.3000025.g006
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GM percepts. The results showed that prestimulus functional connectivity between the left IPS

and the frontal regions was significantly enhanced for the bistable EM trials compared to the

bistable GM trials (Fig 6D and S3 Table). No significant activations were found in the reverse

contrast, i.e., bistable GM> bistable EM. Therefore, the enhanced dynamics in the frontopar-

ietal network prior to the presentation of the bistable stimuli predicted the subsequent subjec-

tively perceived EM percepts.

Discussion

By using EEG, intracranial recordings, and fMRI, we investigated how the frequency of alpha-

band oscillations acts as the critical neural dynamics that accommodate the temporal and spa-

tial grouping during ambiguous perception in the Ternus paradigm and, more importantly,

how the brain makes predictions, based on intrinsic alpha frequency, to resolve perceptual

ambiguity. At the behavioral level, comparable task performance/judgment difficulty was

revealed between the bistable temporal and spatial grouping condition (Fig 2D and 2E). There-

fore, any neuronal difference between the two bistable conditions cannot be attributed to dif-

ferences in judgment difficulty. At the neural level, both within and between subjects, peak

prestimulus frequency of alpha oscillations in the occipitoparietal regions predicted the bis-

table temporal versus spatial grouping (Figs 3 and 4). Moreover, efficient perceptual inference,

based on spontaneous variance in the intrinsic PAFs, induced a representation of the subse-

quently reported bistable percept in the neural signals before the actual appearance of the sec-

ond frame, indicating a preactivation of the subjectively perceived bistable percepts (Fig 5).

Based on the above observations, we propose that the alpha frequency gates the time window

for perceptual grouping and perceptual inference based on intrinsic alpha frequency biased

poststimulus neural representations by inducing preactivation of the predicted percepts. In

addition, the reduced prestimulus alpha power (Fig 6A), together with enhanced prestimulus

blood-oxygen-level–dependent (BOLD) activity and network dynamics in the frontoparietal

network (Fig 6C and 6D), predicted bistable EM rather than GM percepts.

It has been proposed that perception is discrete and cyclic in a manner of perceptual cycles

[15,16,45,61,62]. Accumulating recent evidence showed that perceptual performance depends

on the frequency of the critical rhythm at around the onset time of stimuli [50,51,63]. A higher

frequency of the brain oscillations should be equivalent to a faster frame rate of discrete per-

ception and vice versa. Accordingly, lower alpha frequency was reported to be associated with

poorer temporal resolution [50,51], as if the slower frame rate of perception made two succes-

sive flashes more likely to fall within the same frame and thus be perceived as one [61]. In the

present Ternus paradigm, the intrinsic alpha frequency determines whether the two frames

are integrated over time (i.e., EM) or not (i.e., GM). Specifically, when the alpha frequency is

relatively slow (i.e., longer alpha cycles) to cover both spatially and temporally segregated

information segments, temporal grouping between the frames dominates over spatial group-

ing, resulting in the EM percepts (Fig 1B, upper panel; Fig 3C and 3D). On the other hand,

when the alpha frequency is relatively high (i.e., shorter alpha cycles) to cover only spatially

segregated information segments, spatial grouping with the frames dominates, resulting in the

GM percepts (Fig 1B, lower panel; Fig 3C and 3D).

The intracranial data further confirmed the above alpha frequency effect in distributed

visual areas including both the dorsal and ventral visual stream, such as the primary and sec-

ondary visual areas in the lingual gyrus, higher-order areas in the fusiform gyrus, the lateral

occipital cortex (LOC), the middle temporal gyrus (MT), and the IPS (Fig 4). The dorsal occi-

pitoparietal areas, such as the inferior IPS, have been associated with perceptual integration of

multiple elements and object representations [64,65]. The ventral visual areas, such as LOC,
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have been found to be involved in object recognition [66]. Moreover, it has been well docu-

mented that the MT area is highly responsive to visual motion and codes highly specialized

representations of visual information [67–69], which is putative for generating apparent

motion percepts [70,71]. The present results further suggest that the alpha frequency effect is a

ubiquitous property of the visual system, which is involved in representing coherent object

motion percepts. It has been revealed that neural oscillations could create temporal windows

that favor the communication between neurons [72,73]. The common alpha frequency effect

in distributed visual systems may drive the communication between neuronal groups in these

areas to effectively encode and organize the dynamic visual inputs and induce coherent appar-

ent motion percepts.

Please note, for both the present EEG and the intracranial results, a very small within-sub-

ject variance in the PAF (about 0.1 Hz in the EEG data, Fig 3D, and about 0.2 Hz in the intra-

cranial data, Fig 4) was associated with qualitatively different perceptual percepts. Based on

our hypothesis, at the within-subject level, the most critical factor that causes different percep-

tual outcomes is the perceptual inference built through the intrinsic alpha frequency, but not

the absolute alpha frequency per se. It has been suggested before that the perceptual inference

is very sensitive to subtle changes in the intrinsic brain states [74,75]. Therefore, in the present

study, a slightly lower alpha frequency could be enough to induce a perceptual inference

towards the EM percept, while a slightly higher alpha frequency could be enough to induce an

inference towards the GM percept. In addition, the small within-subject frequency effect is

consistent with previous studies showing small frequency modulations [51,58]. Technically

speaking, this small effect might result from the fact that the alpha frequency data derived

from the EEG and intracranial signals reflect the summed activity of both the task-relevant

and the task-irrelevant neuronal populations. Therefore, the observed effect could be attenu-

ated by the noises from the task-irrelevant neuronal populations [51].

The generative models of perceptions commonly consider the brain as an unconscious

inference machine that uses hidden states to predict observed sensory inputs [55,76]. Although

there have been some detailed theories on the neural basis of the underlying computations of

this system [77], it still lacks direct empirical evidence about how the brain uses its intrinsic

states to build up specific prediction signals for perceptual inference. In the present study,

even with the sensory inputs (the two frames with a threshold IFI) being kept constant in the

bistable condition, the subjective perception varies between the EM and GM percepts on a

trial-by-trial base, thus suggesting fluctuations in prior predictions. Please note, the definition

of prediction in the present study stands for “internal model’s prediction” under the general

perceptual inference framework [54,74], which is different from the term of “top-down predic-

tion” manipulated in the field of cognitive neuroscience and psychology [78,79]. The former

one represents the priors in the Bayesian framework and includes any factors that can provide

prior information [6,55]: the perceptual prediction based on intrinsic PAFs in the present

study is an example of this type of prediction. On the other hand, the latter term of “top-down

prediction” is associated with the top-down control mechanisms in the higher-order brain

areas, which is not directly supported by the data in the present study.

The present Ternus display puts the brain under the explicit contextual information that

there are two possible apparent motion percepts, i.e., GM versus EM. Moreover, the alpha

peak frequency, which provides the critical window for perceptual integration, is widely con-

sidered as one putative marker of an individual’s intrinsic state [80,81]. Therefore, perception

is able to employ the current intrinsic alpha frequency to build prior probability of predictions

about the most possibly perceived apparent motion percepts (Fig 5A, left panel). The percep-

tual inference is efficient if it is consistent with the perceptual outcome, i.e., in the high PAF

GM trials and the low PAF EM trials; the inference is inefficient if it is inconsistent with the
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perceptual outcome, i.e., in the high PAF EM trials and the low PAF GM trials (Fig 5A, right

panel). Our results showed that the peak alpha frequency not only predicted the outcome of

bistable perceptual grouping (Figs 3C, 3D and 4) but also modulated the fidelity of neural rep-

resentations of the integrated percepts (Fig 5). Compared to the inefficient inference, neural

representations of the bistable EM versus GM percepts could be more robustly decoded under

the efficient inference (Fig 5D, 5E and 5F), suggesting that the efficient inference based on

intrinsic PAFs enhanced the fidelity of neural representations of the predicted percepts. More

interestingly, under the efficient inference, the neural signals evoked by the actual presentation

of the second frame could be readily read out from the neural signals even before the presenta-

tion of the second frame (Fig 5F and 5G), suggesting a preactivation of the predicted percepts.

These results thus fundamentally advance our mechanistic understanding on how the alpha

frequency builds up specific prediction signals for perceptual inference: perceptual predictions

on the spatially versus temporally integrated percepts are generated based on variation in the

intrinsic PAFs, which induces preactivated neural representations that resemble the neural

representations evoked by the actual stimuli. Please note, since time 0 in the decoding analysis

was relative to the presentation of frame 2, the significant 0–100 ms poststimulus time window

of the decoding analysis (Fig 5F) corresponds to about 100 (threshold IFI)–200 ms (threshold

IFI + 100 ms) relative to the actual presentation of frame 1. It is thus possible that, about 150–

200 ms after the presentation of frame 1, the participants have already generated conscious

perceptual experiences of the predicted percepts under the modulation of perceptual predic-

tion [14,82]. However, since the whole significant poststimulus time window still involves rela-

tively early processing phases around 100–150 ms after the presentation of frame 1, one

alternative interpretation is that the present relatively early poststimulus time window might

reflect early neural mechanisms such as the iconic memory [83].

Since the explicit EM percepts are observed at the short IFI while the explicit GM percepts

are observed at the long IFI (Figs 1A and 2A), and since the bistable EM percepts involve higher

alpha frequency than the bistable GM percepts (Fig 3D), it is possible that shorter time frames

and accordingly faster temporal processing are involved in the EM percepts, which may

demand more efficient communication of information through the brain. It has been corre-

spondingly suggested that attention facilitates fast temporal processing [84–86]. Therefore, one

hypothesis is that the bistable EM percepts may require more frontoparietal attentional network

involvement than the bistable GM percepts. Alternatively, in contrast to EM, which is more a

temporal matching, GM is more a gestalt/global matching of objects, which ignores retinotopic

correspondence in favor of object-based grouping [32,87,88]. Such high-level, nonretinotopic,

gestalt grouping of GM might be expected to require more frontoparietal involvement as

opposed to the occipital regions, which might be sufficient for short-lived, retinotopically orga-

nized grouping [89]. Our fMRI results provide supporting evidence to the former hypothesis:

both increased prestimulus neural activity (Fig 6C) and increased prestimulus network dynam-

ics (Fig 6D) in the frontoparietal network predicted the subsequent bistable EM (temporal

grouping), rather than GM (spatial grouping), percepts. Moreover, the enhanced frontoparietal

activations and DMN deactivations during the bistable EM trials (Fig 6B) indicated that bistable

temporal grouping was more attention-demanding than bistable spatial grouping [90,91]. Con-

sistent with the fMRI results, the prestimulus alpha power results (Fig 6A) also supported this

conclusion by showing a lower prestimulus alpha power in the bistable EM than GM trials.

Since it has been well documented that alpha power is an effective indicator of the level of atten-

tion engaged in a certain cognitive task (the higher the alpha power, the lower the level of atten-

tion) [81,92–94], the lower prestimulus alpha power during the bistable EM trials indicated

higher level of attention. Therefore, the fMRI results, together with the prestimulus alpha power
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results, suggested that temporal grouping is more attention-demanding than spatial grouping in

the Ternus paradigm.

To further understand the more general role of alpha frequency in perceptual grouping

across both space and time rather than just see the specific effect with a single variant of the

Ternus paradigm, future experiments with paradigms examining perceptual grouping at dif-

ferent levels of complexity and with regard to different visual attributes are still needed. In

terms of the Ternus paradigm per se, the present study only focused on the temporal window

of perceptual integration and the effect of perceptual inference, while there are other possible

interpretations of this specific illusion, such as alternations between object versus group pro-

cessing [32,33], between the use of top-down predictions (for example, trial history) [95], and

between the use of different reference frames [96–98]. Moreover, other frequency-band oscil-

latory activities, such as the theta-band oscillations that have been suggested to be implicated

in the perception of apparent motion [63] and temporal integration [99], might be involved in

the present phenomenon as well, but the current research methods may not be sufficient

enough to detect these significant theta effects. For example, in the intracranial experiment,

since most of the implanted electrodes of the four patients were in the posterior brain regions

with few electrodes in the higher-order areas, it remains unknown whether there is a signifi-

cant theta effect in the higher brain areas, such as the frontal cortex [100,101].

To summarize, by adopting a Ternus display in which subjective perception fluctuates

between temporally versus spatially integrated percepts, we showed that the occipitoparietal

alpha frequency defines a temporal window for perceptual integration. Moreover, in the situa-

tion of efficient perceptual inference, neural representations of the predicted percepts based on

the alpha frequency were preactivated before the actual presentation of the critical stimuli.

Therefore, perceptual inference employs PAF-induced predictions to resolve perceptual

ambiguity.

Materials and methods

Ethics statement

All the participants gave their informed consent prior to the experiment in accordance with the

Declaration of Helsinki. The fMRI, the EEG, and the patient experiments were all approved by

the Ethics Committee of School of Psychology, South China Normal University (06202015_Ter-

nusCQ). The placement of the depth electrodes was based solely on the clinical needs for the

treatment of the patients and was thus independent of the purpose of the present study. This

study did not add any invasive procedure to the intracranial recordings. All the participants

were at least 18 years old and gave their written informed consent prior to the experiments.

Participants

Nineteen adult participants (12 females, mean age of 19.6 years old) took part in the EEG experi-

ment. Another group of 20 adult participants (12 females, mean age of 23.4 years old) took part

in the fMRI experiment. Two participants in the EEG experiment were discarded because of

excessive eye movement artifacts. One participant in the fMRI experiment was discarded

because of low accuracy (less than 70%) in the explicit conditions, and another participant was

discarded because of the excessive head movements during the scanning. Therefore, 17 partici-

pants in the EEG experiment and 18 participants in the fMRI experiment were included for fur-

ther analysis. Additionally, four adult patients (two males, mean age of 24 years old) undergoing

intracranial recordings with stereotactically implanted multilead electrodes (Guangdong Sanjiu

Brain Hospital, China) for epilepsy treatment participated in the present study. Although the

anatomical locations of the electrodes were different in each patient, we included the patients
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whose electrodes were implanted in the occipital and parietal regions. Patients who had destruc-

tive lesions such as tumor or encephalomalacia were excluded. All the participants were right-

handed, with normal or corrected-to-normal visual acuity.

Stimuli

Visual stimuli consisted of two consecutively presented frames of stimuli (frame 1 and frame

2), and each frame was presented for 30 ms (Fig 1). There was a blank period between the two

frames, i.e., the IFI. The IFI could be either explicitly short at 50 ms or explicitly long at 230 ms

or at the transition threshold, which was specific for each subject based on pre-experiment psy-

chophysics. Each frame contained two horizontally arranged black disks (1.6˚ of visual angle

in diameter) on a gray background. The center-to-center spatial distance between the two

disks was 3˚ of visual angle. The two frames shared one common disk location at the center of

the display. The location of the lateral disk of the first frame, either on the left or the right side

of the shared central disk, was always opposite to the lateral disk of the second frame (Fig 1).

Specifically speaking, frame 1 with left and central disks and frame 2 with right and central

disks induced rightward apparent motion; frame 1 with right and central disks and frame 2

with left and central disks induced leftward apparent motion. The same set of stimulus param-

eters was adopted for the fMRI, the EEG, and the patient experiments. Depending on the IFI

and participants’ online judgments in the bistable trials, there were four types of experimental

trials: 1) the explicit EM trials (“Explicit EM”) with the short IFI of 50 ms; 2) the explicit GM

trials (“Explicit GM”), with the long IFI of 230 ms; 3) the bistable trials with the threshold IFI,

which were judged by the participants as the EM trials (“Bistable EM”); and 4) the bistable tri-

als with the threshold IFI, which were judged by the participants as the GM trials (“Bistable

GM”).

Psychophysical procedures

To specify the 50% threshold of IFI for the bistable condition for each individual subject, we

asked each participant to perform a psychophysical pretest before the main experiment. Prior

to the psychophysics test, participants were shown demos of the explicit EM and GM condi-

tions and performed a practice block with only explicit EM and GM trials until the accuracy

reached no less than 95%. During the formal psychophysics test, the first frame was presented

for 30 ms. After a variable IFI (seven levels: 50, 80, 110, 140, 170, 200, or 230 ms), the second

frame was presented for 30 ms as well. Participants were asked to perform a two-alternative

forced choice (2AFC) task in which they had to choose between the EM and the GM percept.

For each IFI condition, the percentage of GM reports (i.e., “1 –percentage of EM reports”) was

collapsed over the leftward and rightward motion directions. The seven data points (one for

each IFI) were fitted into a psychometric curve using a logistic function [102]. The transition

IFI threshold, i.e., the point at which EM and GM were reported with equal possibility, was cal-

culated by estimating the 50% performance point on the fitted logistic function for each partic-

ipant [102]. The individual transition threshold derived from the psychophysics test was then

used as the IFI in the bistable trials of the subsequent main experiment. Differently from the

EEG and fMRI experiment, in the intracranial experiment, an adaptive staircase procedure

[103] was adopted to find the individual IFI threshold at which 50% of the stimuli were per-

ceived as GM.

Main experiment procedures

Participants were instructed to fixate at a central fixation throughout the experiment without

moving their eyes. The experimental task was to discriminate the two types of motion by
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pressing two prespecified buttons on the response pad using the thumb of each hand, respec-

tively. The mapping between the two response buttons and the two types of apparent motion

percept was counterbalanced between participants.

In each trial, the first frame was presented for 30 ms, and after a variable IFI (50 ms, 230

ms, or the individual IFI threshold), the second frame was presented for another 30 ms. The

fMRI experiment consisted of 440 trials in total, including 80 explicit EM trials, 80 explicit GM

trials, 160 bistable trials, and 120 null trials. The null trials, in which only the central fixation

cross was presented, were used as the implicit baseline. The participants were asked to rest for

a short period of time (11 s, i.e., five repetition times [TRs]) after every 6 minutes’ task perfor-

mance, which made three short periods of rest in total. During the three short rest periods, the

scanner kept running, and a visual instruction “rest” was presented on the center of the screen

throughout. One TR after the disappearance of the “rest” instruction, the behavioral task

resumed. The EEG experiment consisted of four blocks, and each block included 40 explicit

EM trials, 40 explicit GM trials, and 80 bistable trials, which were intermixed randomly, result-

ing in 640 experimental trials in total. A rest break was allowed between blocks. For the fMRI

and EEG experiment, each trial was followed by a time interval that was selected randomly

among 2,000, 2,250, 2,500, 2,750, and 3,000 ms. In the intracranial experiment, there were four

blocks of 80 trials (320 trials in total), 10% of which were explicit EM and GM trials. The inter-

trial interval varied randomly between 1.5 and 2.5 s. In all the three experiments, the temporal

order of all the trials was randomized for each participant individually to avoid potential prob-

lems of unbalanced transition probabilities. All participants completed a training section of 5

min before the recording.

Recording and preprocessing of the EEG data

EEGs were continuously recorded from 64 Ag/AgCl electrodes (10–20 System) with Brai-

nAmp DC amplifiers (low-pass = 100 Hz, high-pass = 0.01 Hz, and sampling frequency = 500

Hz). The vertical electro-oculogram was recorded by one electrode under the participants’ left

eyes. All the electrode impedances were kept below 5 kO. Signals were referenced online to the

unilateral mastoid. Offline processing and analysis were performed using EEGLAB [104] and

customized scripts in MATLAB (The MathWorks, Natick, MA, USA). Data were down-sam-

pled to 160 Hz, rereferenced to the average reference, epoched from –800 ms before the first

frame to 1,000 ms after the first frame for the subsequent alpha frequency analysis, and re-

epoched from –500 ms to 500 ms relative to the presentation of the second frame for the

decoding analysis. Trials containing visually identified eye movements or muscle artifacts were

excluded manually. Visually identified noisy electrodes were spherically interpolated.

Acquisition and preprocessing of the intracranial data

Ten to 13 semirigid, multilead electrodes were stereotactically implanted in the four partici-

pants, respectively. All the electrodes have a diameter of 0.8 mm and contain 10–16 2-mm–

wide and 1.5-mm–apart contacts. The precise anatomical location of each contact was identi-

fied by coregistering each participant’s postimplantation CT with the preimplantation 3D T1

image, using rigid affine transformations derived from FSL’s FLIRT algorithm [105]. Intracra-

nial recordings were conducted using commercial video–intracranial monitoring system. The

data were bandpass filtered online from 0.1 to 300 Hz and sampled at 1,000 Hz, using a refer-

ence contact located in the white matter. For the offline analysis, recording signals were down-

sampled to 500 Hz. Contacts in the epileptogenic zones were excluded from further analyses.

Each contact was rereferenced with respect to its direct neighbor, i.e., bipolar montage, to

achieve high local specificity by removing effects of distant sources that spread equally to
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adjacent sites through volume conduction. All the data were epoched from –800 to 1,000 ms

relative to the presentation of the first frame.

Acquisition and preprocessing of the fMRI data

A Siemens 3T Trio system with a standard head coil at Beijing MRI Center for Brain Research

was utilized to obtain T2�-weighted echo-planar images (EPIs) with blood oxygenation level-

dependent contrast. The matrix size was 64 × 64 mm3, and the voxel size was 3.4 × 3.4 × 3

mm3. Thirty-six transversal slices of 3-mm thickness that covered the whole brain were

acquired sequentially with a 0.75-mm gap (TR = 2.2 s, TE = 30 ms, FOV = 220 mm, flip

angle = 90˚). There was a single run of functional scanning, including 524 EPI volumes. The

first five volumes were discarded to allow for T1 equilibration effects.

Data were preprocessed with Statistical Parametric Mapping software SPM12 (Wellcome

Department of Imaging Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk). Images

were realigned to the first volume to correct for interscan head movements. The mean EPI of

each participant was then computed and spatially normalized to the MNI single-participant

template using the “unified segmentation” function in SPM12. This algorithm is built on a

probabilistic framework that enables image registration, tissue classification, and bias correc-

tion to be combined within the same generative model. The resulting parameters of a discrete

cosine transform, which define the deformation field necessary to move individual data into

the space of the MNI tissue probability maps, were then combined with the deformation field

transforming between the latter and the MNI single participant template. The ensuing defor-

mation was subsequently applied to individual EPI volumes. All images were thus transformed

into standard MNI space and resampled to 2 × 2 × 2 mm3 voxel size. The data were then

smoothed with a Gaussian kernel of 8-mm full-width half-maximum to accommodate inter-

participant anatomical variability. Data were high-pass filtered at 1/128 Hz and analyzed with

a general linear model (GLM) as implemented in SPM12. Temporal autocorrelation was mod-

eled using an AR (1) process.

Analysis of the behavioral data

For the behavioral data in the EEG, intracranial, and fMRI experiment, omissions and trials

with RTs 3 standard deviations (SDs) away from the mean RT in each condition were first

excluded from further analysis. For the calculation of accuracy rates in the two explicit condi-

tions, the explicit trials at the short IFI with a judgment of GM and the explicit trials at the

long IFI with a judgment of EM were considered as incorrect trials, which were discarded and

excluded from further analysis. For both the EEG and fMRI experiment, paired t tests were

performed to test the difference in the accuracy rates between the two types of explicit trials,

the proportions of EM and GM trials in the bistable condition, and the mean RTs for the two

explicit and the two bistable conditions, respectively.

Alpha oscillation analysis of the EEG data

For all the electrodes in all the participants, a power spectrum (from 5 Hz to 30 Hz) was

obtained through a Fast Fourier Transform (FFT) of all the trials (from –800 to 0 ms relative to

the presentation of the first frame). An amplitude topographic map of the most prominent fre-

quency band in the power spectrum was obtained. For each participant, the individual peak

alpha frequency was determined as the value corresponding to the maximum peak frequency

from the 800 ms of data prior to the presentation of the first frame within the 8–13 Hz range

for the selected posterior electrodes. The Pearson product–moment correlation between the

Perceptual inference based on intrinsic alpha frequency

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000025 March 13, 2019 19 / 29

http://www.fil.ion.ucl.ac.uk/
https://doi.org/10.1371/journal.pbio.3000025


individual alpha frequency and the individual IFI threshold obtained from the psychophysical

procedures was then calculated.

Instantaneous PAF and alpha power were analyzed using the methods and code developed

by Cohen [58]. We chose only one electrode, which showed the strongest alpha amplitude

among all the occipital electrodes in the posterior ROI for each participant, to calculate the

PAF and the alpha power [51]. To avoid contaminations by the poststimulus signals, only the

prestimulus period (from –800 to 0 ms) of the EEG signals were extracted, and all the post-

stimulus period signals (starting from 0 ms) were excluded. Furthermore, to avoid edge arti-

facts at the stimulus onset due to filtering, the prestimulus signals of each bistable trial were

copied, flipped from left to right, and appended to the right side of the original data. These

epochs were filtered between 8 and 13 Hz with a zero-phase, plateau-shaped bandpass filter

with 15% transition zones. Phase angle and amplitude time series were extracted from the fil-

tered data with a Hilbert transform. The alpha power was obtained by calculating the square of

the amplitude. For the frequency calculation, the temporal derivative of the phase angle time

series describes how phase changes over time and thus corresponds to the instantaneous fre-

quency in Hz (when scaled by the sampling rate and 2π). Since noises in the phase angle time

series can cause sharp, nonphysiological responses in the derivative, the instantaneous fre-

quency was filtered with a median filter with an order of 10 and a maximum window size of

400 ms: data were median filtered ten times with 10 time windows ranging from 10 to 400 ms

prior to averaging across trials. Since this analysis considers changes only in the instantaneous

phase of the data, it is mathematically independent from the amplitude of the oscillation,

except where amplitude is equal to zero and phase is undefined. Subsequently, the instanta-

neous PAFs were averaged across bistable EM and GM trials, respectively.

Decoding analysis of the EEG data

Multivariate decoding techniques were further adopted to investigate how the PAF affects the

representation contents of the bistable EM and GM percepts with the progress of time. For

each participant, we first calculated the instantaneous alpha frequency for each time point in

the prestimulus window (from –800 ms to 0 relative to the onset of frame 2) of each bistable

trial, based on the one chosen electrode with the maximal alpha amplitude. Subsequently, sta-

tistical tests (paired t test) between the bistable EM and bistable GM conditions were per-

formed at the group level. The significant time points were further selected as the time points

of interest, and the PAF for each trial was determined by averaging the instantaneous alpha

frequency across these significant time points (–570 to –350 ms relative to the presentation of

frame 2; see S3 Fig). Subsequently, amplitude data epochs of all the bistable trials (–400 to 400

ms relative to the presentation of frame 2), right after the preprocessing steps and without any

further processing steps (no spectral analysis applied), were sorted according to the calculated

PAF of each trial and half split into the high PAF and the low PAF trial sessions. The bistable

GM trials in the high PAF session and the bistable EM trials in the low PAF session were

selected as the two types of trials in the efficient inference condition; the bistable EM trials in

the high PAF session and the bistable GM trials in the low PAF session were selected as the

two types of trials in the inefficient inference condition. Please note, the PAF of each bistable

trial was used only as an indicator to categorize the bistable trials into the efficient versus inef-

ficient conditions in a post hoc way but was never used as the actual data fed into the subse-

quent decoding analysis. To exclude potential confounds caused by different number of trials

upon comparing different conditions, we matched the trial count in the above four types of tri-

als by randomly selecting a subsample of trials from the conditions with more trials. We then

applied a multivariate linear discriminant analysis to characterize the temporal dynamics that

Perceptual inference based on intrinsic alpha frequency

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000025 March 13, 2019 20 / 29

https://doi.org/10.1371/journal.pbio.3000025


discriminated between the subjectively perceived bistable EM versus GM percepts for the effi-

cient and inefficient inference condition, respectively.

Classifications were based on the regularized linear discriminant analysis to identify a pro-

jection in the multidimensional EEG data, x, that maximally discriminated between the two

representations across all stimulus levels. Each projection is defined by a weight vector, w,

which describes a one-dimensional projection y of the EEG data y ¼
P

i wixi þ c; with i sum-

ming over all channels and c a constant. The regularization parameter was optimized in pre-

liminary tests and kept fixed for all the analyses. The decoding analysis was performed in a

time-resolved manner by applying it to each time point sequentially, resulting in an array of

classifiers, for example, w(t1), w(t2), w(t3) and so on. To improve the signal-to-noise ratio, the

data were first averaged within a time window of 50 ms centered around the time point of

interest. This process could introduce some contaminations from the poststimulus signals to

the prestimulus signals around the stimuli onset: the signal at time 0 contains the information

within –25 to 25 ms. However, the abovementioned contaminations can influence the presti-

mulus signals about 25 ms at most. Subsequently, the classifier performance was assessed not

only at the time point used for training (for example, classifier w(t1) was tested at t1, w(t2) was

tested at t2, and so on) but also on data from all the other time points (for example, classifier w
(t1) was tested on all the time points t1, t2, t3, and so on). The performance of the classifier

was quantified using the receiver operator characteristic (ROC), based on leave-one-out cross-

validation within each participant. The above procedure resulted in a (training time) × (decod-

ing time) temporal generalization matrix per condition.

Alpha frequency analysis of the intracranial data

We first extracted the averaged alpha amplitude during the prestimulus period (–800 to 0 ms

relative to the first frame) for each contact in the same manner as for the EEG analysis (using

FFT). The first 10 contacts with the highest alpha amplitude (8–13 Hz) were then selected as

ROIs for each patient. Subsequently, we adopted similar methods and procedures as in the

EEG analysis to calculate the prestimulus instantaneous frequency for the bistable EM and

GM trials for each contact, which was subsequently averaged across the 10 contacts.

Statistical testing of the neurophysiology data

The difference between two conditions was statistically tested using nonparametric cluster-

based permutation tests, which were implemented in customized scripts in MATLAB (The

MathWorks). Specifically speaking, paired t tests were first calculated between the two condi-

tions, for example, the temporal generalization matrices for the efficient versus inefficient

inference conditions. Elements that passed a threshold value corresponding to a p-value of

0.05 were marked, and neighboring marked elements were identified as clusters. Cluster-based

correction was applied when multiple time points were tested (Figs 3D, 4 and 5D–5G): data

were first randomly shuffled 1,000 times (500 times in the decoding analysis); for each shuffle,

the count of suprathreshold samples within a cluster was used to define the cluster size; and

the largest cluster size was entered into a distribution of cluster sizes [106], which was expected

under the null hypothesis. Clusters in the real data were considered as statistically significant

only if they exceeded the size of 95th percentile of the null distribution of clusters, at α = 0.05.

Statistical analysis of the fMRI data

At the individual level, the GLM was used to construct a multiple regression design matrix.

The four experimental conditions were modeled as regressors of interest: explicit EM, explicit

GM, bistable EM, and bistable GM. The four types of event were time locked to the onset of
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the first frame in each trial by a canonical synthetic hemodynamic response function and its

first-order time derivative with an event duration of 0 s. In addition, all the omission trials and

the outlier trials in which RTs were outside of the mean RT ± 3 SD were modeled separately as

another regressor. The six head movement parameters derived from the realignment proce-

dure were also included as confounds. Parameter estimates were subsequently calculated for

each voxel using weighted least-square analysis to provide maximum likelihood estimators

based on the temporal autocorrelation of the data. No global scaling was applied.

For each participant, simple main effects for each of the four experimental conditions were

computed by applying appropriate “1 0” baseline contrasts, that is, experimental conditions

versus implicit baseline (null trials). The four first-level individual contrast images were then

fed into a within-participants ANOVA at the second group level employing a random-effects

model (flexible factorial design in SPM12 including an additional factor modeling the subject

means). In the modeling of variance components, we allowed for violations of sphericity by

modeling nonindependence across parameter estimates from the same subject and allowing

unequal variances between both conditions and participants using the standard implementa-

tion in SPM12. We were particularly interested in the differential neural activity between the

two types of bistable trials (bistable EM versus bistable GM). Areas of activation were identi-

fied as significant only if they passed a conservative threshold of p< 0.005, family-wise error

(FWE) corrected for multiple comparisons at the cluster level, with an underlying voxel level

of p< 0.005, uncorrected [107].

Statistical analysis on prestimulus neural activity of the fMRI data

To investigate how the prestimulus neural activity predicted the outcome of bistable perceptual

grouping, a new GLM model was estimated. Given that the ITI was jittered between 2,000–

3,000 ms and one-third of all the trials were null trials, the prestimulus periods of all the experi-

mental trials were long enough and adequately jittered for the present statistical analysis on

prestimulus neural activity. In the new GLM model, four types of new events were time locked

to the time points after the participants made their responses in the preceding trials (“Trials N-

1”) of the four types of experimental trials, i.e., the prestimulus preparation period of the cur-

rent trial (“Trials N”). All the outliers, errors, and missed trials and trials preceded by outliers

and errors were separately modeled as another regressor. In this way, parameter estimates in

each of the four newly defined critical neural events indicate the height of prestimulus prepara-

tion neural activity prior to the actual presentation of the explicit EM, the explicit GM, the bis-

table EM, and the bistable GM stimuli. Brain regions of activation were identified as

significant only if they passed a conservative threshold of p< 0.005 FWE correction for multi-

ple comparisons at the cluster level, with an underlying voxel level of p< 0.005, uncorrected.

PPI analysis on prestimulus neural activity of the fMRI data

Since the left IPS exhibited specific selectivity towards the bistable EM percepts during both

the pre- (Fig 6C) and the poststimulus (Fig 6B) period, we used the left IPS as the seed region

to perform the PPI analysis, focusing on the prestimulus period. For the PPI analysis, presti-

mulus neural activity (time locked to the responses in “Trials N-1”) in the left IPS was used as

the physiological factor and the contrast of “bistable EM versus bistable GM” as the psycholog-

ical factor. For each participant, the neural contrast of “bistable EM versus bistable GM” was

first calculated in the individual level GLM. Subsequently, each participant’s individual peak

voxel in the left IPS was determined as the maximally activated voxel within a sphere of

16-mm radius (i.e., twice smoothing kernel) around the coordinates of the peak voxel from the

second-level group analysis (Fig 6B). Individual peak voxels from every participant are located
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in the same anatomical structure (left IPS MNI coordinates: x = –33 ± 6, y = –37 ± 7,

z = 42 ± 6). Next, the left IPS time series in every participant were extracted from a sphere of

4-mm radius around the individual peak voxels. The PPI term was created for each participant

by multiplying the deconvolved and mean-corrected BOLD signal in the given ROI (i.e., the

physiological variable) with the psychological variable of interest (i.e., “bistable EM versus bis-

table GM”). After convolution with the HRF, mean correction, and orthogonalization, three

regressors (the PPI term, the physiological variable, and the psychological variable) were

entered into the GLM to reveal areas in which neural activations were predicted by the PPI

term, with the physiological and the psychological regressors being treated as confounding

variables. The PPI analysis was first carried out for each participant and then entered into a

random-effects group analysis. Statistical significance was set to p< 0.005, uncorrected at the

voxel level, with the cluster extent exceeding 100 voxels.

Supporting information

S1 Table. Patient information and behavioral performance in the intracranial experiment.

Following information is reported for each patient: the EZ identified by the clinical investiga-

tion; the number of ELs; the total number of CHs. Task performance: ARs of the explicit EM

and GM condition; reported rates of GM in the bistable condition. AR, accuracy rate; CH,

electrode contact; EL, implanted electrode shaft; EM, element motion; EZ, epileptogenic zone;

GM, group motion.

(DOCX)

S2 Table. Brain activations in the main Fig 6B and 6C. Brain regions showing significant rel-

ative increases of BOLD response associated with the bistable EM and bistable GM trials before

and after the presentation of the first frame. BOLD, blood-oxygen–level dependent; EM, ele-

ment motion; GM, group motion.

(DOCX)

S3 Table. Brain activations in the main Fig 6D. Brain regions that showed higher prestimulus

functional connectivity with the left IPS (–32, –38, 38) in the bistable EM than bistable GM tri-

als. EM, element motion; GM, group motion; IPS, intraparietal sulcus.

(DOCX)

S1 Video. Demo of explicit EM. EM, element motion.

(MP4)

S2 Video. Demo of explicit GM. GM, group motion.

(MP4)

S1 Fig. Psychometric fitting results for each participant in fMRI experiment. Underlying

data available at https://osf.io/tze94/. fMRI, functional magnetic resonance imaging.

(TIF)

S2 Fig. Correlation between the occipital alpha cycle in each individual subject and the

individual transition IFI threshold. Dashed lines indicate 95% confidence intervals around

the linear fit line. Underlying data available at https://osf.io/tze94/. IFI, interframe interval.

(TIF)

S3 Fig. Instantaneous PAF relative to the representation of the second frame revealed

higher alpha frequency preceding the bistable GM trials than the bistable EM trials. Signifi-

cant time points are indicated by the horizontal black bar (cluster-based correction, p< 0.05).

Shaded regions denote ±1 within-subjects SEM. Underlying data available at https://osf.io/tze94/.

Perceptual inference based on intrinsic alpha frequency

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000025 March 13, 2019 23 / 29

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000025.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000025.s002
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000025.s003
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000025.s004
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000025.s005
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000025.s006
https://osf.io/tze94/
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000025.s007
https://osf.io/tze94/
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000025.s008
https://osf.io/tze94/
https://doi.org/10.1371/journal.pbio.3000025


EM, element motion; GM, group motion; PAF, prestimulus alpha frequency; SEM, standard

error of the mean.

(TIF)
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