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We study efficient continuation methods for computing the ground state solution of quasi-2D rotating dipolar Bose-Einstein
condensates (BECs). First, the highly accurate spectral collocation method is used to discretize the governing Gross-Pitaevskii
equation (GPE). Then, we modify the two-level continuation scheme for 3D dipolar BECs described in Jeng et al. (2014) to
develop a single-parameter continuation method for quasi-2D rotating dipolar BECs, where the chemical potential is treated as
the continuation parameter. Further, by adding the ratio of dipolar interaction strength to contact interaction strength as the
second continuation parameter, we propose an efficient two-parameter continuation method which can effectively show the
change of the ground-state vortex structures as the dipolar interaction strength gradually increases. Moreover, we also study
linear stability analysis for the GPE. Sample numerical results on quasi-2D rotating dipolar BECs are reported.

1. Introduction

In 2005, the first dipolar Bose-Einstein condensate (BEC)
was successfully produced by the group of Griesmaier [1]
at the University of Stuttgart, in a gas of 52Cr atoms cooled
to 700 nK. Later in 2011, Lu et al. [2] at Stanford University
realized a dipolar BEC of 164Dy atoms. The next year, a dipo-
lar BEC of 168Er atoms was also achieved in experiments at
Innsbruck University [3]. These successful experiments pro-
vided new impetus for the theoretical and numerical studies
of dipolar BECs.

In dipolar BECs, since 52Cr, 168Er, and 164Dy atoms have
larger magnetic moments, the long-range dipolar interaction
is nonnegligible, and it induces various interesting phenomena
such as d-wave collapse and expansion [4], roton spectrum [5,
6], self-bound dipolar droplets [7, 8], and the supersolid phase
[9]. Moreover, vortices are also an important topic in BECs,
which can be created by rotating the trap. In this paper, we will
develop efficient numerical methods for computing the
ground state solution of rotating dipolar BECs and then inves-
tigate the ground-state vortex structures.

Using the mean-field theory, the three-dimensional (3D)
rotating dipolar BEC at absolute zero temperature is well

described by the macroscopic wave function Ψðx, tÞ whose
evolution is governed by the dimensionless Gross-
Pitaevskii equation (GPE) [10–12].

i∂tΨ x, tð Þ = −
1
2
Δ + V xð Þ + β Ψj j2 + λ Udip xð Þ ∗ Ψj j2� �

− ωLz

� �
Ψ x, tð Þ, x ∈ℝ3, t > 0,

ð1Þ

where i =
ffiffiffiffiffiffi
−1

p
is the imaginary unit; x = ðx, y, zÞ is the spa-

tial variable; t is the time variable; ∗ denotes the convolution
operator with respect to the spatial variable; VðxÞ = ð1/2Þ
ðγ2xx2 + γ2yy

2 + γ2zz
2Þ is the harmonic trapping potential

with γx, γy, and γz being the trap frequencies in the x-,
y-, and z-direction, respectively; β and λ are constants rep-
resenting the strength of the contact (or short-range) and
dipolar (or long-range) interaction, respectively; UdipðxÞ =
ð3/4πÞð1 − 3ðx ⋅ nÞ2/jxj2Þ/jxj3 is the long-range dipolar
interaction potential with the dipolar axis n = ðn1, n2, n3Þ
∈ℝ3 satisfying jnj = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21 + n22 + n23
p

= 1; ω is angular veloc-
ity of the laser beam; and Lz = xpy − ypx = −iðx∂y − y∂xÞ is
the z-component of the angular momentum L = x × P with
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the momentum operator P = −i∇ = ðpx, py, pzÞ. Two impor-
tant invariants of the GPE are the mass (or normalization)
of the wave function

Ψ x, tð Þk k2 ≔
ð
ℝ3

Ψ x, tð Þj j2 dx ≡
ð
ℝ3

Ψ x, 0ð Þj j2 dx = 1, t ≥ 0,

ð2Þ

and the energy per particle

E Ψ x, tð Þð Þ≔
ð
ℝ3

1
2
∇Ψj j2 +V xð Þ Ψj j2 + β

2
Ψj j4

�

+
λ

2
Udip xð Þ ∗ Ψj j2� �

Ψj j2 − ωRe �ΨLzΨ
� ��

� dx ≡ E Ψ x, 0ð Þð Þ, t ≥ 0:
ð3Þ

Using the equality [13]

Udip xð Þ = 3
4π

1 − 3 x ⋅ nð Þ2/ xj j2
xj j3 = −δ xð Þ − 3∂nn

1
4π xj j

� �
,

ð4Þ

where δðxÞ is the Dirac distribution function, ∂n = n ⋅ ∇,
and ∂nn = ∂nð∂nÞ, we can decouple the convolution UdipðxÞ
∗ jΨj2 into two terms

Udip xð Þ ∗ Ψ x, tð Þj j2 = − Ψ x, tð Þj j2 − 3∂nnφ x, tð Þ, ð5Þ

where the function φ is defined by

φ x, tð Þ≔ 1
4π xj j ∗ Ψ x, tð Þj j2, x ∈ℝ3, t > 0: ð6Þ

Substituting (5) into (1) and noticing (6), we can trans-
form the GPE (1) for rotating dipolar BECs into a Gross-
Pitaevskii-Poisson or Schrödinger-Poisson (SP) type system
of the following form

i∂tΨ x, tð Þ = −
1
2
Δ + V xð Þ + β − λð Þ Ψj j2 − 3λ∂nnφ x, tð Þ − ωLz

� �
Ψ x, tð Þ, x ∈ℝ3, t > 0,

ð7Þ

−Δφ x, tð Þ = Ψ x, tð Þj j2, lim
xj j⟶∞

φ x, tð Þ = 0, ð8Þ

and then the energy (3) can be rewritten as

E Ψ x, tð Þð Þ =
ð
ℝ3

1
2
∇Ψj j2 +V xð Þ Ψj j2 + β − λ

2
Ψj j4 + 3λ

2
∂n∇φj j2 − ωRe �ΨLzΨ

� �� �
dx:

ð9Þ

In many physical experiments of dipolar BECs, the con-
densates are confined by an anisotropic harmonic potential.
When we consider Vðx, y, zÞ = ð1/2Þðγ2xx2 + γ2yy

2Þ + ð1/2ε4Þ
z2, where 0 < ε≪ 1 is a small parameter describing the

strength of confinement in the z-direction, the condensates
shape will typically like a pancake, and the wave function Ψð
x, tÞ can be factorized into [14, 15]

Ψ x, tð Þ = e−it/2ε
2
ψ x, y, tð Þwε zð Þ, wherewε zð Þ = ε−1/2π−1/4e−z

2/2ε2 :

ð10Þ

Substituting (10) into the 3D SP system (7)–(8) and the
normalization constraint (2), we obtain a quasi-two-
dimensional (quasi-2D) system of equations

i∂tψ x, y, tð Þ =
�
−
1
2
Δ + V2 x, yð Þ + β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

ψj j2

−
3λ
2

∂n⊥n⊥ − n23Δ
� �

φ2 x, y, tð Þ − ωLz

�
ψ x, y, tð Þ, x, yð Þ

∈ℝ2, t ≥ 0,

ð11Þ

φ2 x, y, tð Þ =U2 x, yð Þ ∗ ψ x, y, tð Þj j2,U2 x, yð Þ

=
1

2
ffiffiffi
2

p
π3/2

ð
ℝ

e−s
2/2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 + y2 + ε2s2
p ds,

ð12Þ

with the constraint

ψ x, y, tð Þk k2 =
ð
ℝ2

ψ x, y, tð Þj j2 dxdy = 1, ð13Þ

where Δ = ∂xx + ∂yy, V2ðx, yÞ = ð1/2Þðγ2xx2 + γ2yy
2Þ, n⊥ =

ðn1, n2Þ, ∂n⊥ = n⊥ ⋅ ∇⊥ with ∇⊥ = ð∂x, ∂yÞ, and ∂n⊥n⊥ = ∂n⊥ð
∂n⊥Þ. To find the stationary states including ground state of a
rotating dipolar BEC, we take the ansatz

ψ x, y, tð Þ = e−iμtϕ x, yð Þ, t ≥ 0, ð14Þ

where μ ∈ℝ is the chemical potential and ϕðx, yÞ is a time-
independent complex function. Substituting (14) into
(11)–(13), we obtain the following nonlinear eigenvalue prob-
lem

−
1
2
Δ + V2 x, yð Þ + β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

ϕj j2 − 3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 x, yð Þ − ωLz

� �
ϕ x, yð Þ

= μϕ x, yð Þ, x, yð Þ ∈ℝ2,

ð15Þ

~φ2 x, yð Þ =U2 x, yð Þ ∗ ϕ x, yð Þj j2, ð16Þ
with the constraint

ϕk k2 =
ð
ℝ2

ϕ x, yð Þj j2 dxdy = 1: ð17Þ

During the last decade, some significantmathematical the-
ories and numerical methods for the ground state of dipolar
BECs have been reported in the literature [13–17]. Bao et al.
[13] transformed the 3D GPE for dipolar BECs into a Gross-
Pitaevskii-Poisson type system and then proved rigorously
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the existence and uniqueness of its ground state. Using dimen-
sion reduction, Cai et al. [14] derived two mean-field equa-
tions for quasi-1D and quasi-2D dipolar BECs, respectively,
and compared their ground state solutions with those of the
3D GPE. The existence and uniqueness of the ground state
solutions of these two mean-field equations were established
in [15]. In addition, to compute the ground state of dipolar
BECs, various efficient numerical methods have been pro-
posed, such as the backward Euler sine pseudospectral method
[13], two-level continuation scheme [16], and normalized gra-
dient flow method with nonuniform fast Fourier transform
[17]. However, there were only few studies, e.g., [18], concern-
ing the efficient numerical method for computing the ground
state of rotating dipolar BECs. In this paper, we will focus on
this issue. First, we modify the two-level continuation scheme
[16] for 3D dipolar BECs to develop a single-parameter con-
tinuation method for quasi-2D rotating dipolar BECs. Next,
by treating the chemical potential and the parameter corre-
sponding to the strength of the dipolar interaction as the con-
tinuation parameters simultaneously, we propose an efficient
two-parameter continuation method, which can trace the
ground state solutions of quasi-2D rotating dipolar BECs with
increasing the strength of the dipolar interaction. Thus, the

change of the ground-state vortex structure with respect to
the dipolar interaction can be easily obtained.

This paper is organized as follows. In Section 2, we
briefly describe the spectral collocation method (SCM) for
quasi-2D rotating dipolar BECs. In Section 3, we propose
single- and two-parameter continuation algorithms for com-
puting the ground state solution of rotating dipolar BECs. In
Section 4, we study linear stability analysis for (11). The
numerical results are reported in Section 5. Finally, some
concluding remarks are given in Section 6.

2. A SCM for Quasi-2D Rotating Dipolar BECs

In this section, we describe the SCM using the sine functions
as the basis functions for equations (15)–(17). First, since the
wave function ϕðx, yÞ⟶ 0 rapidly as jðx, yÞj⟶∞, we
replace the whole space ℝ2 in (15) by a sufficiently large
domain Ω = ð−ℓ, ℓÞ2 and impose the zero Dirichlet boundary
condition on the function ϕðx, yÞ. Next, since ϕðx, yÞ is a
complex function, we let ϕðx, yÞ = uðx, yÞ + ivðx, yÞ, where
uðx, yÞ and vðx, yÞ are two real-valued functions. Then,
equations (15)–(17) can be rewritten as

where ux, vx and uy, vy denote the partial derivatives of u
and v with respect to x and y, respectively. Let WN = spanf
sjðxÞskðyÞ: j, k = 1, 2,⋯,N − 1g be the trial function space,

where snðxÞ = sin ðnπðx + ℓÞ/2ℓÞ. Then, dimWN = ðN − 1Þ2
and all the functions of WN satisfy the boundary conditions
of (18). We choose uniform grids fðxn, ymÞ = ð−ℓ + n2ℓ/N ,
−ℓ +m2ℓ/NÞ: n,m = 1, 2,⋯,N − 1g as the collocation
points. The SCM for solving (18) is to find uNðx, yÞ =
∑N−1

j,k=1ξjksjðxÞskðyÞ ∈WN and vNðx, yÞ =∑N−1
j,k=1ηjksjðxÞskðyÞ ∈

WN such that the residuals vanish at the collocation points,
that is,

−
1
2
ΔuN xn, ymð Þ +V2 xn, ymð ÞuN xn, ymð Þ

+
β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

u2N xn, ymð Þ + v2N xn, ymð Þ	 

uN xn, ymð Þ

−
3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 xn, ymð ÞuN xn, ymð Þ
− ω xn vNð Þy xn, ymð Þ − ym vNð Þx xn, ymð Þ

h i

−μuN xn, ymð Þ = 0, n,m = 1, 2,⋯,N − 1,

−
1
2
ΔvN xn, ymð Þ +V2 xn, ymð ÞvN xn, ymð Þ

+
β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

u2N xn, ymð Þ + v2N xn, ymð Þ	 

vN xn, ymð Þ

−
3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 xn, ymð ÞvN xn, ymð Þ
+ ω xn uNð Þy xn, ymð Þ − ym uNð Þx xn, ymð Þ

h i

−μvN xn, ymð Þ = 0, n,m = 1, 2,⋯,N − 1: ð21Þ

−
1
2
Δu +V2 x, yð Þu + β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

u2 + v2
� �

u −
3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 x, yð Þu − ω xvy − yvx
� �

= μu

−
1
2
Δv +V2 x, yð Þv + β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

u2 + v2
� �

v −
3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 x, yð Þv + ω xuy − yux
� �

= μv

inΩ,

u x, yð Þ = v x, yð Þ = 0 on ∂Ω,

ð18Þ

~φ2 x, yð Þ =U2 x, yð Þ ∗ u2 + v2
� �

, ð19Þ
constraint :

ð
Ω

u2 + v2
� �

dxdy = 1, ð20Þ
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Denote sij = sjðxiÞ, sij′ = sj ′ðxiÞ, sij″ = sj″ðxiÞ, ðv2Þnm = V2
ðxn, ymÞ, qnm = ð∂n⊥n⊥ − n23ΔÞ~φ2ðxn, ymÞ, and define the ðN
− 1Þ × ðN − 1Þ matrices

S = sij
	 


1≤i,j≤N−1, S′ = sij′
h i

1≤i,j≤N−1
, S″ = sij″

h i
1≤i,j≤N−1

,

V2 = v2ð Þnm
	 


1≤n,m≤N−1,Q = qnm½ �1≤n,m≤N−1,

U = ξjk
	 


1≤j,k≤N−1,V = ηjk

h i
1≤j,k≤N−1

:

ð22Þ

Let the vectors u = vecðUÞ, v = vecðVÞ, v2 = vecðV2Þ, and
q = vecðQÞ, where vecðWÞ denotes the vectorization of a
matrixW formed by stacking the columns ofW into a single

column vector. Then, u, v, v2, q ∈ℝðN−1Þ2 and (21) can be
expressed as a nonlinear system of equations involving
parameter μ:

H1 u, v, μð Þ = −
1
2
Au + v2 ∘ Buð Þ + β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

Buð Þ2 + Bvð Þ2	 

∘ Buð Þ

−
3λ
2
q ∘ Buð Þ − ωCv − μBu = 0,

ð23Þ

H2 u, v, μð Þ = −
1
2
Av + v2 ∘ Bvð Þ + β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

Buð Þ2 + Bvð Þ2	 

∘ Bvð Þ

−
3λ
2
q ∘ Bvð Þ + ωCu − μBv = 0,

ð24Þ
where “∘” denotes the Hadamard product, wk =w∘⋯∘w
stands for the k-times Hadamard products of w, and A, B,
C ∈ℝðN−1Þ2×ðN−1Þ2 are defined by

A = S ⊗ S″ + S″ ⊗ S,
B = S ⊗ S,

C = S′ ⊗ diag x1,⋯, xN−1ð ÞSð Þ − diag y1,⋯, yN−1ð ÞSð Þ ⊗ S′,
ð25Þ

where “ ⊗ ” denotes the Kronecker product and diag
ðd1,⋯, dN−1Þ is an ðN − 1Þ × ðN − 1Þ diagonal matrix with
d1,⋯, dN−1 as the diagonal entries. Moreover, the con-
straint condition (20) can be expressed as

ℓ2 uTu + vTv
� �

= 1: ð26Þ

To compute the matrix Q, we need to efficiently dis-
cretize the convolution ~φ2. Based on the convolution the-
ory, it is natural to consider using the Fourier transform
to compute it. To be precise, since F½~φ2� =F½U2 ∗ ðu2 +
v2Þ� =F½U2� ⋅F½u2 + v2�, where F denotes the 2D Fourier
transform operator, we have that

~φ2 =F−1 F U2½ � ⋅F u2 + v2
	 
	 


, ð27Þ

where F−1 denotes the 2D inverse Fourier transform
operator, and the Fourier transform F ½U2� of the integral
U2 is given by [14]

F U2½ � kx, ky
� �

=
1
2π2

ð
ℝ

e−ε
2s2/2

k2x + k2y + s2
ds: ð28Þ

Since the integrand in (28) decays exponentially fast,
we can replace the domain of integration ℝ by a suffi-
ciently large interval ½−ℓ, ℓ� and then evaluate the definite
integral via numerical quadratures, e.g., composite trape-
zoidal rule or Gaussian quadrature. Moreover, in practical
computations, since we only know the values of u and v
on the grid points of the domain Ω, the Fourier transform
and the inverse Fourier transform mentioned above are
replaced by the discrete Fourier transform and the inverse
discrete Fourier transform, respectively, and can be effi-
ciently computed via the fast Fourier transform (FFT)
and the inverse fast Fourier transform (IFFT).

In our numerical computations, we incorporate the SCM
in the continuation method and use single- or two-
parameter continuation algorithms, which are described in
the next section, to compute the ground state solution of a
quasi-2D rotating dipolar BECs. In the continuation
method, we need the Jacobian matrix associated with H =
½H1,H2�T , which is given as

DH u, v, μð Þ =
DuH1 u, v, μð Þ DvH1 u, v, μð Þ DμH1 u, v, μð Þ
DuH2 u, v, μð Þ DvH2 u, v, μð Þ DμH2 u, v, μð Þ

" #
∈ℝ2 N−1ð Þ2× 2 N−1ð Þ2+1ð Þ,

ð29Þ

where

DuH1 u, v, μð Þ = −
1
2
A + diag v2ð ÞB

+
β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

diag 3 Buð Þ2 + Bvð Þ2� �
B

−
3λ
2

diag qð ÞB − μB,

ð30Þ

DvH1 u, v, μð Þ = β + λ 3n23 − 1
� �
ffiffiffiffiffiffi
2π

p
ε

diag 2 Bvð Þ ∘ Buð Þð ÞB − ωC,

ð31Þ
DμH1 u, v, μð Þ = −Bu,

ð32Þ

DuH2 u, v, μð Þ = β + λ 3n23 − 1
� �
ffiffiffiffiffiffi
2π

p
ε

diag 2 Buð Þ ∘ Bvð Þð ÞB + ωC,

ð33Þ
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DvH2 u, v, μð Þ = −
1
2
A + diag v2ð ÞB

+
β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

diag Buð Þ2 + 3 Bvð Þ2� �
B

−
3λ
2

diag qð ÞB − μB,

ð34Þ
DμH2 u, v, μð Þ = −Bv, ð35Þ

and diag ðcÞ is a diagonal matrix with the components
of the vector c as the diagonal entries.

3. Efficient Two-Parameter
Continuation Algorithms

Jeng et al. [16] proposed a two-level continuation scheme for
computing the ground state solution of a 3D dipolar BEC,
which is governed by a stationary state SP system. The two
major differences between the system (15)–(17) for a
quasi-2D rotating dipolar BEC and the stationary state SP
system in [16] are that (i) in the former, the wave function
ϕ is a complex-valued function, while in the latter, the wave
function is a real-valued function. (ii) The function ~φ2 in
(16) is defined by a convolution, while the corresponding
one in the SP system is defined by a Poisson equation. How-
ever, the structures of these two systems are similar. We can
modify the two-level continuation scheme in [16] to com-
pute the ground state solution of a quasi-2D rotating dipolar
BEC which is stated as follows.

First, we rewrite the complex system (15)–(17) into a real
system, which is described in (18)–(20). Starting with ~φ2ðx
, yÞ = 0, (18) is the governing equation for a rotating BEC.
By treating the chemical potential μ as the continuation
parameter, we use an efficient continuation algorithm
[19–22] to trace the ground state solution curve of (18)
bifurcating at the first bifurcation point. The constraint con-
dition (20) is set as the target point for the curve-tracking.
Next, we compute the convolution in (19) to obtain an
approximation of ~φ2 and compute ð∂n⊥n⊥ − n23ΔÞ~φ2 for the
next step continuation algorithm. Here, the operators ∗,
∂n⊥n⊥ , and Δ can be efficiently computed via the FFT and
the IFFT. Then, we use the continuation algorithm again
to trace the ground state solution curve of (18) bifurcating
at the first bifurcation point until the constraint (20) is satis-
fied. Similarly, we use the FFT and IFFT again to compute
the approximation of ~φ2 and ð∂n⊥n⊥ − n23ΔÞ~φ2 for the next
step continuation algorithm. We repeat the same process
as above until two consecutive bifurcation points are close
enough. Then, instead of tracing the ground state solution
curve of (18), we perform the Newton method to solve
(18) and (20) simultaneously and then update the approxi-
mation of ~φ2. We keep repeating the process until the
approximation of ~φ2 converges. Then, the desired ground
state solution of (18)–(20) can be obtained. A detailed
description of this continuation scheme is as follows.

Note that in Algorithm 1, the purpose of Step 1 is to
obtain an appropriate approximate solution as the starting

point for Step 2. And the purpose of Step 2 is to correct
the function ~φ2. Moreover, in the while loop of Step 1, when
i = 1, we obtain the ground state solution ϕ∗1 = u∗1 + iv∗1 of a
rotating BEC and then set ð~φ2Þ1 =U2 ∗ jϕ∗1 j2 to continue
the next iteration of the while loop. This means that we take
ϕ∗1 as an approximate ground state solution of a rotating
dipolar BEC and then use the iterative way to get a better
approximation. Hence, although the initial choice ð~φ2Þ0 = 0
, we actually use ð~φ2Þ1 =U2 ∗ jϕ∗1 j2 as an initial approxima-
tion of ~φ2. Additionally, if a suitable approximation ϕapp
for the ground state solution of a rotating dipolar BEC can
be easily known in advance (e.g., the Thomas-Fermi approx-
imation is a suitable one when β is large), we can choose
ð~φ2Þ0 =U2 ∗ jϕappj2 instead of ð~φ2Þ0 = 0.

To investigate how the ground-state vortex structures are
affected by the strength of the dipolar interaction, we can use
Algorithm 1 to compute the ground state solutions for various
values of λ. However, this is obviously time-consuming
because we must repeatedly implement Algorithm 1. In the
following, we will describe a two-parameter continuation algo-
rithm which can effectively show the change of the ground-
state vortex structures as λ gradually increases.

Let λ = γβ. In the first step of the two-parameter continua-
tion algorithm, we fix γ = γ0 and implement Algorithm 1 to
compute the ground state solution of (18)–(20) with λ = γ0β,
where the chemical potential μ is treated as the continuation
parameter. Set this solution as ðuð0Þ, vð0Þ, μð0ÞÞ. In the second
step, we add γ as the second continuation parameter and con-
tinue to compute the ground state solutions for other values
of γ. Here, the ground state solution yð0Þ = ðuð0Þ, vð0Þ, μð0Þ, γð0Þ
= γ0Þ is used as the starting point. The procedure of tracing
next accepted ground state solution yð1Þ = ðuð1Þ, vð1Þ, μð1Þ, γð1ÞÞ
of (18)–(20) with λ = γð1Þβ consists of two parts:

(I) Find an approximate ground state solution for the
next value of γ:

We fix ~φ2 = ~φð0Þ
2 ≔U2 ∗ ððuð0ÞÞ2 + ðvð0ÞÞ2Þ in (18) and

then perform the Euler predictor-Newton corrector process

once to obtain a solution of (18) with ~φ2 = ~φð0Þ
2 under the

normalization condition (20), where μ and γ are treated as
the continuation parameters simultaneously.

(II) Correct ~φ2 by the iterative way:

We repeatedly update the approximation of ~φ2 and solve
(18) and (20) simultaneously until the approximation of ~φ2
converges. Then, the ground state solution yð1Þ of
(18)–(20) with λ = γð1Þβ is obtained.

Using yð1Þ instead of yð0Þ and repeating (I) and (II), we
can obtain the next accepted ground state solution yð2Þ = ð
uð2Þ, vð2Þ, μð2Þ, γð2ÞÞ of (18)–(20) with λ = γð2Þβ. Similarly,
we can continue to trace the ground state solutions yð3Þ,
yð4Þ, and so on, until the desired target value of γ is reached.
A detailed description of this two-parameter continuation
algorithm is as follows.
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Note that in practical computations, we suggest choosing
γ0 = 0, which means that the dipolar interaction is absent,
and then (18)–(20) are simplified to the system of equations
for rotating BECs. Some efficient continuation algorithms

[19–21] have been proposed for computing the ground state
solution of rotating BECs. We can use one of these algo-
rithms instead of Algorithm 1 in Step 1. In addition, Step 2
has the advantage that it can trace the ground state solutions

Input:
i≔ the i-th iterate of the iterative continuation scheme.
τ1 ≔ accuracy tolerance for two consecutive bifurcation points.
τ2 ≔ accuracy tolerance for ð~φ2Þi, j.
ð~φ2Þ0 ≔ 0, i≔ 0.
Step 1. Compute the first bifurcation point ð0, 0, μ1Þ of (18) with ~φ2 = ð~φ2Þ0.
while (i = 0 or jμi − μi+1j > τ1) do

(i) i = i + 1.
(ii) Treat μ as the continuation parameter and use the classical continuation algorithm to trace the ground state solution curve of

(18) with ~φ2 = ð~φ2Þi−1 until the constraint (20) is satisfied. Set this solution as ðu∗i , v∗i , μ∗i Þ.
(iii) Compute ð~φ2Þi =U2 ∗ ððu∗i Þ2 + ðv∗i Þ2Þ and ð∂n⊥n⊥ − n23ΔÞð~φ2Þi.
(iv) Compute the first bifurcation point ð0, 0, μi+1Þ of (18) with ~φ2 = ð~φ2Þi.

end
Step 2. Set j = 0 and ðu∗i,0, v∗i,0, μ∗i,0Þ = ðu∗i , v∗i , μ∗i Þ, ð~φ2Þi,0 = ð~φ2Þi.
while (j = 0 or kð~φ2Þi,j − ð~φ2Þi,j−1k∞ > τ2) do

(i) j = j + 1.
(ii) Use the approximate solution ðu∗i,j−1, v∗i,j−1, μ∗i,j−1Þ as the initial guess, and perform the Newton method to solve (18) with

~φ2 = ð~φ2Þi, j−1 and (20) simultaneously.

(iii) Set the approximate solution obtained in (ii) by ðu∗i,j, v∗i,j, μ∗i,jÞ.
(iv) Compute ð~φ2Þi,j =U2 ∗ ððu∗i,jÞ2 + ðv∗i,jÞ2Þ and ð∂n⊥n⊥ − n23ΔÞð~φ2Þi,j.

end
The desired ground state solution ðu∗, v∗, μ∗Þ = ðu∗i, j, v∗i, j, μ∗i, jÞ.

Algorithm 1: A single-parameter continuation algorithm for computing the ground state of a quasi-2D rotating dipolar BEC.

Input:
γ0 ≔ the initial value of the parameter γ.
γend ≔ the final value of the parameter γ.

τ≔ accuracy tolerance for ð~φ2
ðiÞÞj.

Step 1. Use Algorithm 1 to compute the ground state solution of (18)–(20) with λ = γ0β. Set this solution as ðuð0Þ, vð0Þ, μð0ÞÞ.
Step 2. Add γ as the second continuation parameter and trace the ground state solution curve of (18)–(20) until γ ≥ γend :
Use ðuð0Þ, vð0Þ, μð0Þ, γð0ÞÞ = ðuð0Þ, vð0Þ, μð0Þ, γ0Þ as the starting point and set i = 0.
while γðiÞ < γend do

(i) i = i + 1.
(ii) Compute ~φ2

ði−1Þ =U2 ∗ ððuði−1ÞÞ2 + ðvði−1ÞÞ2Þ and ð∂n⊥n⊥ − n23ΔÞ~φ2
ði−1Þ.

(iii) Treat μ and γ as the continuation parameters simultaneously, and perform the predictor-corrector process once to obtain a
solution of (18) with ~φ2 = ~φ2

ði−1Þ under the normalization condition (20). Set this solution as ðuði,0Þ, vði,0Þ, μði,0Þ, γði,0ÞÞ.
(iv) Set j = 0 and compute ~φ2

ði,0Þ =U2 ∗ ððuði,0ÞÞ2 + ðvði,0ÞÞ2Þ, ð∂n⊥n⊥ − n23ΔÞ~φ2
ði,0Þ.

(v) j = j + 1.
(vi) Use ðuði, j−1Þ, vði,j−1Þ, μði, j−1Þ, γði,j−1ÞÞ as the initial guess and perform Newton’s method to solve (18) with ~φ2 = ~φ2

ði, j−1Þ and (20)
simultaneously. Set this solution as ðuði,jÞ, vði, jÞ, μði,jÞ, γði, jÞÞ.

(vii) Compute ~φ2
ði, jÞ =U2 ∗ ððuði, jÞÞ2 + ðvði,jÞÞ2Þ and ð∂n⊥n⊥ − n23ΔÞ~φ2

ði, jÞ.

(viii) Repeat the procedure (v)–(vii) until k~φði,jÞ
2 − ~φði,j−1Þ

2 k∞ < τ, then set ðuðiÞ, vðiÞ, μðiÞ, γðiÞÞ = ðuði, jÞ, vði,jÞ, μði,jÞ, γði,jÞÞ which is the
ground state solution of (18)–(20) with λ = γðiÞβ.
end

Algorithm 2: A two-parameter continuation algorithm for computing the ground state of a quasi-2D rotating dipolar BEC.

6 Advances in Mathematical Physics



with increasing the value of γ. Thus, the evolution of the
ground-state vortex structure with respect to the dipolar
interaction can be easily observed.

4. Linear Stability Analysis

The aim of this section is to study linear stability analysis for
(11). We impose an infinitesimal perturbation rðx, y, tÞ on
the wave function ψðx, y, tÞ in (14) by letting

ψ x, y, tð Þ = e−iμt ϕ x, yð Þ + r x, y, tð Þð Þ, ð36Þ

where ðμ, ϕðx, yÞÞ is the solution of (15) and rðx, y, tÞ is a
complex function. Substituting (36) into (11) and using the
approximation φ2 =U2 ∗ jψj2 ≈U2 ∗ jϕj2 = ~φ2, we obtain

e−iμt μ ϕ + rð Þ + i
∂r
∂t

� �
≈ e−iμt −

1
2
Δ + V2 +

β + λ 3n23 − 1
� �
ffiffiffiffiffiffi
2π

p
ε

ϕj j2 + ϕ�r + ϕr + rj j2� ��

−
3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 − ωLz

�
ϕ + rð Þ,

ð37Þ

⇒i
∂r
∂t

≈ −
1
2
Δ +V2 +

β + λ 3n23 − 1
� �
ffiffiffiffiffiffi
2π

p
ε

ϕj j2 − 3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 − ωLz − μ

� �
ϕ

+ −
1
2
Δ +V2 −

3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 − ωLz − μ

� �
r

+
β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

2 ϕj j2r + ϕ2�r + 2ϕ rj j2 + ϕr2 + rj j2r� �
:

ð38Þ
Then taking (15) into account and linearizing (i.e.,

neglecting terms of OðrkÞ and k ≥ 2), we obtain the following
linearized equation which models the development of the
perturbation rðx, y, tÞ:

i
∂r
∂t

= −
1
2
Δ + V2 x, yð Þ − 3λ

2
∂n⊥n⊥ − n23Δ
� �

~φ2 x, yð Þ − ωLz − μ

� �
r

+
β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

2 ϕj j2r + ϕ2�r
� �

:

ð39Þ

Since (39) includes both r and �r, we use the technique
described in [23–25] to decompose the perturbation rðx, y, tÞ
as

r x, y, tð Þ = p x, yð Þeαt + q x, yð Þe�αt , ð40Þ

Table 1: The first bifurcation points and associated energy levels of (15) with V2ðx, yÞ = ð1:003x2 + 0:997y2Þ/2, ε = 1/
ffiffiffi
5

p
, n = ð1,0,1Þ/ ffiffiffi

2
p

,
β = 500, λ = 200, and ω = 0:9.

Step 1 of Algorithm 1 Step 2 of Algorithm 1

i μi μi − μi−1j j μ∗i j μ∗2,j ~φ2ð Þ2, j − ~φ2ð Þ2,j−1
��� ���

∞
1 0.999994079 — 6.948810421 1 6.809820932 3.05e-04

2 0.813189699 0.186804379 6.835483577 2 6.810717813 4.63e-05

3 0.800819436 0.012370264 — 3 6.810229110 4.02e-05

4 6.809399974 3.87e-05

5 6.808222809 3.97e-05

6 6.806631955 4.82e-05

7 6.804621207 5.55e-05

8 6.802425277 5.53e-05

9 6.800456124 4.69e-05

10 6.798965356 3.57e-05

11 6.797954351 2.64e-05

12 6.797308616 1.95e-05

13 6.796906662 1.40e-05

14 6.796657470 9.84e-06

15 6.796501681 6.89e-06

16 6.796402891 4.80e-06

17 6.796339258 3.33e-06

18 6.796297675 2.30e-06

19 6.796270168 1.58e-06

20 6.796251800 1.09e-06

21 6.796239445 7.44e-07

μ∗ = 6:796239445

Total execution time: 723.39 sec
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Figure 1: The solution curves, the contour plot of jϕj2, and the phase of ϕ for the ground state solution of (15), where V2ðx, yÞ = ð1:003
x2 + 0:997y2Þ/2, ε = 1/
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Figure 2: Implementing Algorithm 2 for the ground state solution branch of (15), where V2ðx, yÞ = ð1:003x2 + 0:997y2Þ/2, ε = 1/
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p
, ω = 0:9, β = 500, and λ = γβ.
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where pðx, yÞ and qðx, yÞ are complex functions, and α ∈
ℂ is the unknown coefficient yet to be determined. Inserting
(40) into (39), we obtain a linear eigenvalue problem of the
form

−
1
2
Δ + V2 x, yð Þ + 2

β + λ 3n23 − 1
� �
ffiffiffiffiffiffi
2π

p
ε

ϕj j2 − 3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 x, yð Þ − ωLz − μ

� �
p x, yð Þ

+
β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

ϕ2q x, yð Þ = iαp x, yð Þ,

ð41Þ

−
1
2
Δ + V2 x, yð Þ + 2

β + λ 3n23 − 1
� �
ffiffiffiffiffiffi
2π

p
ε

ϕj j2 − 3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 x, yð Þ − ωLz − μ

� �
q x, yð Þ

+
β + λ 3n23 − 1

� �
ffiffiffiffiffiffi
2π

p
ε

ϕ2p x, yð Þ = −iαq x, yð Þ:

ð42Þ

Let AðϕÞ =
f 11ðϕÞ f 12ðϕÞ
f 12ðϕÞ f 22ðϕÞ

" #
be an operator matrix with

f11 ϕð Þ = −
1
2
Δ +V2 x, yð Þ + 2

β + λ 3n23 − 1
� �
ffiffiffiffiffiffi
2π

p
ε

ϕj j2

−
3λ
2

∂n⊥n⊥ − n23Δ
� �

~φ2 x, yð Þ − ωLz − μ,
ð43Þ

f12 ϕð Þ = β + λ 3n23 − 1
� �
ffiffiffiffiffiffi
2π

p
ε

ϕ2, ð44Þ

and B = diag ði,−iÞ ∈ℂ2×2, r = ½pðx, yÞ, qðx, yÞ�T . Then, (41)

and (42) can be written in matrix form as

A ϕð Þr = αBr: ð45Þ

This eigenvalue problem has the following property.

Proposition 1. The complex eigenvalues of (45) must come in
conjugate pairs as fα, �αg.

Proof. Let α, r be a complex eigenvalue-eigenvector pair of
(45). From (45), we have

A ϕð Þ�r = �α �B�r: ð46Þ

Take Q =
0 1

1 0

" #
. Then, Q−1 =Q, QAðϕÞQ−1 = AðϕÞ,

QBQ−1 = �B, and from (46), we have

A ϕð ÞQ−1�r = �αBQ−1�r, ð47Þ

which means that �α,Q−1�r is a complex eigenvalue-
eigenvector pair of (45). Therefore, the complex eigenvalues
of (45) always appear in conjugate pairs fα, �αg.

When all eigenvalues α of (45) have negative or zero real
parts; then, the corresponding perturbation rðx, y, tÞ in (40)
decays exponentially or is bounded; hence, the wave func-
tion is linearly stable. In contrast, if at least one eigenvalue
has a positive real part; then, rðx, y, tÞ grows exponentially;
hence, the wave function is linearly unstable. Unfortunately,
since (45) includes the unknown wave function ϕ, it is diffi-
cult to analyze the sign of the real part of its eigenvalues
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Figure 3: The contours of the ground state density function jϕj2 of (15), where V2ðx, yÞ = ð1:003x2 + 0:997y2Þ/2, ε = 1/
ffiffiffi
5

p
, n = ð1,0,1Þ/ ffiffiffi

2
p

,
ω = 0:9, β = 500, and λ = γβ.

Table 2: The execution time (in seconds) for computing the ground state solution of Example 2 by implementing Algorithm 2. NIW:
number of iterations in the while loop of Step 2.

γ NIW Time (s)

Step 1 0 — 349.10

Step 2

0–0.5123 4 158.57

0.5123–1.1017 4 85.51

1.1017–2.0856 6 307.20 Total time of Step 2: 551.28

Total 14 900.38
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Figure 5: The discrete eigenvalues distribution of (45) for quasi-2D (rotating) dipolar BEC, where V2ðx, yÞ = ð1:003x2 + 0:997y2Þ/2, ε = 1
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theoretically. However, when the wave function is obtained
using numerical computation, we can compute all eigen-
values of (45) numerically and then discuss the linear stabil-
ity of the wave function, see Example 4 for details.

5. Numerical Results

Algorithms 1 and 2 were implemented to compute the
ground state solution of quasi-2D (rapidly) rotating dipolar
BECs, where we used the SCM with N = 51 (or N = 65 for
the rapidly rotating case) as the discretization method. In
Examples 1–3, we chose V2ðx, yÞ = ð1:003x2 + 0:997y2Þ/2, ε

= 1/
ffiffiffi
5

p
, ω = 0:9 in (15), and the computational domain Ω

= ð−12, 12Þ2. The accuracy tolerance for the Newton correc-
tor is 5 × 10−7. We studied how the ground-state vortex
structures were affected by the dipolar direction and the
strength of the dipolar interaction. In Example 4, we dis-
cussed the linear stability analysis numerically. In Example
5, we considered the case of rapidly rotating dipolar BECs.
All computations were executed on an Intel CoreTM i7-
2600K PC using Matlab language.

Example 1. We used Algorithm 1 to compute the ground
state solution of quasi-2D rotating dipolar BECs (15) with
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Figure 6: The contours of the ground state density function jϕj2 of (15), where V2ðx, yÞ = ð1:003x2 + 0:997y2Þ/2 + ð1:003x2 + 0:997y2Þ2/4,
ε = 1/

ffiffiffi
5

p
, ω = 1:7, β = 500, and λ = γβ.

Table 3: The execution time (in seconds) for computing the ground state solution of Example 5(2) by implementing Algorithm 2. NIW:
number of iterations in the while loop of Step 2.

γ NIW Time (s)

Step 1 0 — 1907.07

Step 2
0–0.8076 16 2767.42

0.8076–1.4735 11 2191.50 Total time of Step 2: 4958.92

Total 27 6865.99
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Figure 7: The contours of the ground state density function jϕj2 of (15), where V2ðx, yÞ = ð1:003x2 + 0:997y2Þ/2 + ð1:003x2 + 0:997y2Þ2/4,
ε = 1/

ffiffiffi
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p
, n = ð1,0,1Þ/ ffiffiffi

2
p

, ω = 1:9, β = 500, and λ = γβ.

11Advances in Mathematical Physics



n = ð1,0,1Þ/ ffiffiffi
2

p
, β = 500, and λ = 200. We chose τ1 = 0:1 and

τ2 = 10−6 in Algorithm 1. Table 1 lists the implementation
details, i.e., the first bifurcation points μi and associated
energy levels μ∗i of (15), the values of kð~φ2Þi,j − ð~φ2Þi,j−1k∞,

and the total execution time. Table 1 and Figure 1(a) show
that we only need to trace the first solution curves twice,
and the energy level of the ground state solution is μ∗ =
6:796239445. Figure 1(b) shows the contour plot of the den-
sity jϕj2 for the ground state solution, where the hexagonal
arrangement of the vortices is clearly visible. Figure 1(c)
shows the phase of ϕ for the ground state solution.

Example 2. Consider (15) with n = ð1,0,1Þ/ ffiffiffi
2

p
, β = 500, and

λ = γβ. We implemented Algorithm 2 with γ0 = 0 and γend
= 2:2 to compute the ground state solution of (15).
Figure 2(a) displays the solution curve of the wave function
ϕ in two-norm with respect to the chemical potential μ. The
blue solid line and the horizontal red dashed line were
obtained by implementing Steps 1 and 2 of Algorithm 2,
respectively. Note that in Step 2 of Algorithm 2, we can
obtain the ground state solutions for various values of γ.
Figure 2(b) depicts the relationship between γ and μ. We
observe that the chemical potential μ increases almost line-
arly with respect to γ. Figure 3 displays the contours of the
ground state density function jϕj2 for γ = 0, 0:5123, 1:1017,
and 2:0856. From this figure, we can see that (i) when γ =
0 (i.e., the dipolar interaction is absent), the vortex lattice
forms a hexagonal structure. (ii) As the parameter γ

increases, the number of vortices also increases and the vor-
tices form straight lines that are parallel to the x-axis. Table 2
lists the execution time of implementing Algorithm 2 and
the number of iterations in the while loop (NIW) of Step
2. The total NIW of 14 means that from γ = 0 to γ =
2:0856, we obtain ground state solutions for 14 different
values of γ. The average execution time for each value of γ
is 551:28/14 ≈ 39:38 seconds. Hence, using the ground state
solution for γ = 0 as the starting point, Step 2 of Algorithm 2
can effectively trace ground state solutions for other values
of γ.

Example 3. We implemented Algorithm 2 to compute the
ground state solution of (15) with β = 500, λ = γβ, and two dif-
ferent dipolar directions n = ð0,1,1Þ/ ffiffiffi

2
p

and n = ð1,1,1Þ/ ffiffiffi
3

p
.

Figure 4 shows the contours of the ground state density func-
tion jϕj2 for some sample values of γ. From this figure, we
can see that (i) as the parameter γ increases, the vortices form
straight lines and then gradually pinned together to form vor-
tex bands. (ii) For n = ð0,1,1Þ/ ffiffiffi

2
p

, the vortex band orientation
is parallel to the y-axis. (iii) For n = ð1,1,1Þ/ ffiffiffi

3
p

, the vortex
band orientation makes an angle of 60 degrees with the x-axis.

Example 4 (linear stability analysis). To study the linear sta-
bility of (11) numerically, we chose some data in Examples
2–3 and used the built-in function “eig” in Matlab to com-
pute all eigenvalues of the corresponding equation (45).
Figure 5 shows the discrete eigenvalues distribution of (45).
From this figure, we can see that (i) when ω = 0, there is
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Figure 8: The contour of the density function jϕgj2 of the ground state of (15) with ω = 0 and λ = 0, and the contours of the function

ð∂n⊥n⊥ − n23ΔÞ~φ2 corresponding to ϕg.
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one eigenvalue with a positive real part. (ii) When the angu-
lar velocity ω = 0:9, some eigenvalues of (45) have positive
real parts. Therefore, in these cases, the discrete ground state
solutions of (11) are linearly unstable.

Example 5 (rapidly rotating dipolar BECs). In this example,
we investigated how the ground-state vortex structures of
rapidly rotating dipolar BECs were affected by ω, n, and λ.
To this end, we replaced the harmonic potential V2ðx, yÞ =
ð1:003x2 + 0:997y2Þ/2 in (15) by the harmonic-plus-quartic
potential [19, 26]

~V2 x, yð Þ = 1:003x2 + 0:997y2
� �

2
+

1:003x2 + 0:997y2
� �2

4
,

ð48Þ

and set ε = 1/
ffiffiffi
5

p
, β = 500, λ = γβ, Ω = ð−6, 6Þ2, and con-

sider two cases: ω = 1:7 and ω = 1:9.

(1) ω = 1:7. Algorithm 2 with γ0 = 0 and γend = 1:65 was
implemented to compute the ground state solution
of (15), where we considered two different dipolar
directions: (a) n = ð1,0,1Þ/ ffiffiffi

2
p

and (b) n = ð0,1,1Þ/ffiffiffi
2

p

(a) n = ð1,0,1Þ/ ffiffiffi
2

p
. Figure 6(a) shows the contours of the

ground state density function jϕj2 for γ = 0, 0:3410,
0:7196, 1:1740, and 1:6068. From this figure, we
can see that (i) when γ = 0 (i.e., λ = 0), six vortices
are arranged in a hexagonal pattern. (ii) As the
parameter γ increases, the vortices are gradually
rearranged into two rows and form square lattices.
And the orientation of the vortex lattice is parallel
to the x-axis. Moreover, the number of vortices also
evolves gradually from 6 to 10

(b) n = ð0,1,1Þ/ ffiffiffi
2

p
. Figure 6(b) shows the contours of

the ground state density function jϕj2 for γ = 0,
0:3422, 1:0160, 1:3246, and 1:6460. We observe that
as the parameter γ increases, the vortices are gradu-
ally arranged in three columns. And in the middle
column, the number of vortices evolves gradually
from 2 to 4

(2) ω = 1:9. Algorithm 2 with γ0 = 0 and γend = 1:5 was
implemented to compute the ground state solution
of (15), where we chose n = ð1,0,1Þ/ ffiffiffi

2
p

. The execu-
tion time of Algorithm 2 and the NIW of Step 2
are listed in Table 3. From this table, we observe that
using the ground state solution for γ = 0 as the start-
ing point, Step 2 can effectively trace ground state
solutions for other values of γ, and the average exe-
cution time for each value of γ is 4958:92/27 ≈
183:66 seconds. Figure 7 displays vortex lattice struc-

tures of the ground state for γ = 0, 0:7928, 0:8076,
and 1:4735. From this figure, we can see that (i)
when γ = 0, one big vortex at the center is sur-
rounded by eight small vortices in a ring. (ii) With
the increasing of γ, the big vortex at the center is
gradually split into two small vortices. (iii) When γ
increases further, such as γ = 1:4735, the vortices
are rearranged and aligned in three lines along the
direction n⊥

From Examples 2, 3, and 5, we observe that as the
parameter γ increases, that is, as the strength of the dipolar
interaction increases, the vortices gradually form some vor-
tex bands parallel to the direction n⊥. This phenomenon is
mainly related to the dipolar term −ð3λ/2Þð∂n⊥n⊥ − n23ΔÞ~φ2

in (15), where ~φ2 =U2 ∗ jϕj2 involves the unknown wave
function ϕ. To understand the effect of this dipolar term
on the vortex configuration, we take ϕ = ϕg, the ground state
solution of (15) with λ = 0, and numerically compute the
function ð∂n⊥n⊥ − n23ΔÞ~φ2. Figure 8(a) depicts the contour

plot of the density function jϕgj2 for ω = 0, while
Figures 8(b) and 8(c) depict the contour plots of the function
ð∂n⊥n⊥ − n23ΔÞ~φ2 corresponding to ϕ = ϕg with n = ð1,0,1Þ/ffiffiffi
2

p
and ð0,1,1Þ/ ffiffiffi

2
p

, respectively. We can see that the con-
tour plot of the function ð∂n⊥n⊥ − n23ΔÞ~φ2 is an ellipse whose
minor axis is perpendicular to the direction n⊥. This means
that the dipolar term is anisotropic even though the density
wave function jϕgj2 is isotropic. Hence, as the strength of the
dipolar interaction increases, the condensates will be
squeezed in the direction perpendicular to n⊥. Due to this
squeezing, the vortices will be rearranged and aligned paral-
lel to the direction n⊥. Our numerical results confirm this
phenomenon.

6. Conclusions

We have presented an efficient two-parameter continuation
algorithm for computing the ground state solution of
quasi-2D (rapidly) rotating dipolar BECs, where the SCM
was used to discretize the corresponding GPE. The main
advantage of this algorithm is that we only need to trace
the solution curve once to obtain various ground state solu-
tions associated with different strengths of the dipolar inter-
action. Thus, the change of the ground-state vortex structure
with increasing the dipolar interaction strength can be easily
observed. In addition, we have also studied linear stability
analysis for the ground state of rotating dipolar BECs. Based
on the numerical experiments reported in Section 5, we may
give some concluding remarks as follows: (i) the ground-
state vortex structure of rotating dipolar BECs is affected
by the strength of the dipolar interaction and the dipolar
direction. More specifically, as the strength of the dipolar
interaction increases, the vortices are gradually aligned in
lines along the dipolar direction. When the strength is large
enough, some vortices on the vortex lines are pinned
together to form vortex bands. Moreover, for the rapidly
rotating case, we also observe that the big vortex at the
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center is gradually split into two small vortices with increas-
ing the dipolar interaction. (ii) In Example 4, we have shown
numerically that the discrete ground state solutions of quasi-
2D dipolar BECs are linearly unstable, both with and with-
out rotating term.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This study was funded by Ministry of Science and Technol-
ogy of R.O.C. (Taiwan) (MOST 103-2115-M-142-003).

References

[1] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau,
“Bose-Einstein condensation of chromium,” Physical Review
Letters, vol. 94, no. 16, article 160401, 2005.

[2] M. Lu, N. Q. Burdick, S.-H. Youn, and B. L. Lev, “Strongly
dipolar Bose-Einstein condensate of dysprosium,” Physical
Review Letters, vol. 107, no. 19, article 190401, 2011.

[3] K. Aikawa, A. Frisch, M. Mark et al., “Bose-Einstein condensa-
tion of erbium,” Physical Review Letters, vol. 108, no. 21, article
210401, 2012.

[4] T. Lahaye, J. Metz, B. Frohlich et al., “d-Wave collapse and
explosion of a dipolar Bose-Einstein condensate,” Physical
Review Letters, vol. 101, no. 8, article 080401, 2008.

[5] L. Santos, G. V. Shlyapnikov, and M. Lewenstein, “Roton-
Maxon spectrum and stability of trapped dipolar Bose-
Einstein condensates,” Physical Review Letters, vol. 90,
no. 25, article 250403, 2003.

[6] R. M. Wilson, S. Ronen, J. L. Bohn, and H. Pu, “Manifestations
of the roton mode in dipolar Bose-Einstein condensates,”
Physical Review Letters, vol. 100, no. 24, article 245302, 2008.

[7] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and
T. Pfau, “Self-bound droplets of a dilute magnetic quantum
liquid,” Nature, vol. 539, no. 7628, pp. 259–262, 2016.

[8] L. Chomaz, S. Baier, D. Petter et al., “Quantum-fluctuation-
driven crossover from a dilute Bose-Einstein condensate to a
macrodroplet in a dipolar quantum fluid,” Physical Review X,
vol. 6, no. 4, article 041039, 2016.

[9] L. Tanzi, E. Lucioni, F. Famá et al., “Observation of a dipolar
quantum gas with metastable supersolid properties,” Physical
Review Letters, vol. 122, no. 13, article 130405, 2019.

[10] M. Klawunn, R. Nath, P. Pedri, and L. Santos, “Transverse
instability of straight vortex lines in dipolar Bose-Einstein con-
densates,” Physical Review Letters, vol. 100, no. 24, article
240403, 2008.

[11] D. H. O’Dell and C. Eberlein, “Vortex in a trapped Bose-
Einstein condensate with dipole-dipole interactions,” Physical
Review A, vol. 75, no. 1, article 013604, 2007.

[12] S. Yi and H. Pu, “Vortex structures in dipolar condensates,”
Physical Review A, vol. 73, no. 6, article 061602, 2006.

[13] W. Bao, Y. Cai, and H. Wang, “Efficient numerical methods
for computing ground states and dynamics of dipolar Bose-
Einstein condensates,” Journal of Computational Physics,
vol. 229, no. 20, pp. 7874–7892, 2010.

[14] Y. Cai, M. Rosenkranz, Z. Lei, andW. Bao, “Mean-field regime
of trapped dipolar Bose-Einstein condensates in one and two
dimensions,” Physical Review A, vol. 82, no. 4, article 043623,
2010.

[15] W. Bao, N. B. Abdallah, and Y. Cai, “Gross-Pitaevskii-Poisson
equations for dipolar Bose-Einstein condensate with aniso-
tropic confinement,” SIAM Journal on Mathematical Analysis,
vol. 44, no. 3, pp. 1713–1741, 2012.

[16] B.-W. Jeng, C.-S. Chien, and I.-L. Chern, “Spectral collocation
and a two-level continuation scheme for dipolar Bose- Einstein
condensates,” Journal of Computational Physics, vol. 256,
pp. 713–727, 2014.

[17] W. Bao, Q. Tang, and Y. Zhang, “Accurate and efficient
numerical methods for computing ground states and dynam-
ics of dipolar Bose-Einstein condensates via the nonuniform
FFT,” Communications in Computational Physics, vol. 19,
no. 5, pp. 1141–1166, 2016.

[18] X. Antoine, Q. Tang, and Y. Zhang, “A preconditioned conju-
gated gradient method for computing ground states of rotating
dipolar Bose-Einstein condensates via kernel truncation
method for dipole-dipole interaction evaluation,” Communi-
cations in Computational Physics, vol. 24, pp. 966–988, 2018.

[19] B.-W. Jeng, Y.-S. Wang, and C.-S. Chien, “A two-parameter
continuation algorithm for vortex pinning in rotating Bose-
Einstein condensates,” Computer Physics Communications,
vol. 184, no. 3, pp. 493–508, 2013.

[20] S.-L. Chang and C.-S. Chien, “Adaptive continuation algo-
rithms for computing energy levels of rotating Bose-Einstein
condensates,” Computer Physics Communications, vol. 177,
no. 9, pp. 707–719, 2007.

[21] H.-S. Chen, S.-L. Chang, and C.-S. Chien, “Spectral collocation
methods using sine functions for a rotating Bose-Einstein con-
densation in optical lattices,” Journal of Computational Phys-
ics, vol. 231, no. 4, pp. 1553–1569, 2012.

[22] S.-Y. Chen, Y.-S. Wang, B.-W. Jeng, and C.-S. Chien, “Multi-
parameter continuation and collocation methods for rotating
multi-component Bose-Einstein condensates,” International
Journal of Computer Mathematics, vol. 92, no. 4, pp. 850–
871, 2015.

[23] H.-S. Chen, S.-L. Chang, B.-W. Jeng, and C.-S. Chien, “Contin-
uation and stability analysis for Bloch waves of the Gross-
Pitaevskii equation,” Numerical Algorithms, vol. 77, no. 3,
pp. 709–726, 2018.

[24] B. Wu and Q. Niu, “Superfluidity of Bose-Einstein condensate
in an optical lattice: Landau-Zener tunnelling and dynamical
instability,” New Journal of Physics, vol. 5, pp. 104.1–104.24,
2003.

[25] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Sys-
tems, SIAM, Philadelphia, 2010.

[26] A. L. Fetter, B. Jackson, and S. Stringari, “Rapid rotation of a
Bose-Einstein condensate in a harmonic plus quartic trap,”
Physical Review A, vol. 71, no. 1, article 013605, 2005.

14 Advances in Mathematical Physics


	Efficient Continuation Methods for Computing Ground States of Quasi-2D Rotating Dipolar Bose-Einstein Condensates
	1. Introduction
	2. A SCM for Quasi-2D Rotating Dipolar BECs
	3. Efficient Two-Parameter Continuation Algorithms
	4. Linear Stability Analysis
	5. Numerical Results
	6. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

