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ABSTRACT 
 

Land use land cover classification (LULC) is a key tool for accessing, monitoring and management 
of natural resources. Advanced remote sensing technologies such as satellite imageries and 
machine learning algorithms have been widely used for LULC classification around the globe. This 
study was aimed to compare and analyze the performance of Random Forest (RF) and 
Classification and Regression Tree (CART) algorithms for LULC classification of Dang district using 
Landsat-9 and Sentinel-2 imageries of the year 2023 on Google Earth Engine (GEE) platform.  
During the study, satellite images were accessed and filtered by predetermined region of interest, 
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date, cloud percentage (<10%) and spatial resolution (30m) followed by cloud masking and median 
composite. Several satellite indices including normalized difference vegetation index (NDVI), 
normalized difference built up index (NDBI), modified normalized difference water index (MNDWI) 
and barren soil index (BSI) were computed and used to detect five different LULC classes i.e., crop 
lands, water bodies, forest and shrubs, settlements, and barren and sandy lands. The CART model 
classified the Landsat-9 and Sentinel-2 imageries more accurately with overall accuracies of 
97.43% and 96.41% as compared to RF model i.e., 95.71% and 95.71 respectively. Similarly, the 
Kappa coefficient for CART was 0.97 for Landsat-9 and 0.95 for Sentinel-2 imageries while that of 
RF was 0.94 for both image sources. The results indicate that CART performed comparatively 
better than RF under same level of resolution. The current study suggests government stakeholders 
and policymakers to employ LULC as major key tool for sustainable land management, ecological 
conservation, and socio-economic development and addressing global concerns such as 
urbanization and climate change.  
 

 
Keywords: LULC; machine learning; GEE, random forest; classification and regression tree. 
 

1. INTRODUCTION 
 
Land use and land cover are different but 
interchangeable terms. Land cover refers to the 
natural state of physical earth surface such as 
vegetation, wetlands, soil and settlements while 
land use indicates the purposive utilization 
pattern of land resource by human beings 
(Zhang and Li, 2022). Land use land cover 
(LULC) classification is the rigorous process of 
grouping the earth surface based on its use 
pattern and covering. LULC mapping is crucial 
for land use planning and management, 
environmental assessment, vulnerability and 
climate change (Talukdar et al., 2020a and Tung 
et al., 2023). It also helps to determine the way of 
land use transformation over the time period. 
Rapid changes in LULC are prominent in 
developing regions (Tariq et al., 2023) due to 
increasing population, urbanization and human 
interventions on natural resources, due to which 
frequent surveying of earth surface is important. 
Traditional methods such as visual observation 
and field surveying are capable of classifying 
land use and cover pattern accurately but are 
considered to be expensive and inefficient 
(Ibrahim, 2023). To overcome this problem, 
modern technological advancements such as 
remote sensing are essential. Remote sensing is 
the technique of gathering information about 
earth surface without physical contact. Satellites, 
uncrewed air vehicles, passive and active 
sensors are used to collect the required 
information which ultimately processed and 
analyzed to derive useful insights.  
 
Google earth engine is an open-source web-
based cloud computing system that provides 
global time series multi-satellite geo-data for geo-
spatial applications (Kumar and Mutanga, 2018 

and Gorelick, 2017). It is known for its rapid 
computing abilities, accessible large storage 
system and web-based portal which allows 
clients to process petabyte data through normal 
devices (Kumar and Mutanga, 2018). GEE 
consists a large repository of satellite remote 
sensing data such as Moderate resolution 
imaging spectroradiometer (MODIS), Sentinel, 
Landsat, Cropland, Land cover which are widely 
applied in several concerned fields including 
agriculture, hydrological management, land use 
land cover, climate change, disaster 
management, urbanization and ecological 
sciences (Xiong et al., 2017; Huang et al., 2017; 
Devries et al., 2020; Ivushkin et al., 2019, 
Ahemad et al., 2023 and Bullock et al., 2020). 
Although the quality of earth observatory data 
ranges from low to very high depending upon the 
remote sensing technologies, high resolution 
imageries are rarely available due to their 
affordability (Stoian et al., 2019) but, medium 
resolution data from satellites such as Landsat-
8,9 and Sentinel-1,2 can be employed for LULC 
classification purposes (Zhao et al., 2024). 
Machine learning comes at the intersection of 
computer science and data science (Jordan and 
Mitchell, 2015). It exhibits the ability of 
performing assigned task without external 
programming (Mahesh, 2019). Random Forest 
(RF) and Classification and Regression Tree 
(CART) are supervised machine learning models 
which are capable of making decisions based on 
training datasets. These models are capable 
classifying land use and land cover pattern using 
satellite imageries including Sentinel and 
Landsat images in GEE platform precisely 
(Oliveira et al., 2012; Choubin et el., 2019). 
However, their results may vary with imagery 
sources and their quality, number and distribution 
of training and testing data (Avci et al., 2023). 
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Previously, several geospatial researchers have 
conducted numerous studies using the imageries 
of Landsat and Sentinel satellites and machine 
learning algorithms such as random forest, 
classification regression tree and even support 
vector machine. For instances, Zhao et al., 2024 
comparatively analyzed the performance of three 
different machine learning models including RF 
and CART for Sentinel-2 imagery. Similarly, Avci 
et al., 2023 also performed similar study with RF 
and SVM for Sentinel-2 imageries. Both of the 
studies shown the performance abilities of 
different machine learning models using same 
geospatial data, which might result differently 
when employed for different data sources. 
Furthermore, Lokika et al., 2021 also studied the 
performance of machine learning models for 
Landsat-8 and Sentinel-2 imageries at 30 and 10 
meters of resolutions and resulted RF as 
superior classifier for both of the image sources. 
However, resulted outcome might be due to 
variation of image resolution between image 
sources (Zheng et al., 2021). Since the district 
consists of fertile soil for agriculture, dense forest 
and shrub lands and water resources in its plain 
lands, valley and hilly terrains it becomes highly 
prone urbanization, deforestation and other 
human induced land use and land cover changes 
over time. Unfortunately, LULC classification of 

Dang district are rarely available in documented 
formats suggesting huge research gap. Poudel 
and Rawat, 2023 conducted a study in Ghorahi 
sub-metropolitan municipality of Dang district for 
urban area extension using supervised 
maximum-likelihood (SML) and supervised 
vector machine (SVM) and Landsat-8 images. 
The machine learning models used in the 
particular study are considered to be 
comparatively less reliable than RF (Zhao et al., 
2024) which have generated more accurate 
results in several studies. Therefore, to 
overcome the huge research and  
methodological gap for LULC classification in the 
region of interest and to evaluate the 
performance ability of RF and CART model, for 
Landsat-9 and Sentinel-2 imageries at equal 
resolutions of 30 meters, this study was 
performed.  
 

1.1 Study Area 
 
In this study, land use land cover classification 
and performance analysis of Dang district 
(Latitude: 27.6330N to 28.3830N and Longitude: 
82.2170E to 83.2500E) of Lumbini province Nepal 
was performed. Dang district is located in mid 
hills of Nepal surrounded by Siwalik ranges in the 
north and flat plane lands in the south with 

 

 
 

Fig. 1 a. Study area with elevation estimated from Shuttle Radar Topography Mission (SRTM) 
data. b. District boundaries Dang district. c. Dang district used as region of interest (ROI) 
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elevation ranging from 213 meters to 1500  
meters above the sea level. It shares the tropical 
to subtropical climate with hot summer monsoon 
and mild winter. The district is rich in forest and 
water resources, biodiversity, and fertile plain 
lands for agriculture.   
 

2. MATERIALS AND METHODS 
 

2.1 Datasets 
 
The multispectral imageries of Landsat-9 and 
Sentinel-2 satellites were accessed and 
purposively used for land use land cover 
classification in the google earth engine platform. 
The acquired imageries were filtered by date i.e., 
January to December 2023 maintaining the cloud 
masking of less than 10%. Landsat-9 is satellite 
operation managed in collaboration of NASA and 
USGS. It provides high resolution images crucial 
for monitoring and managing of land resources, 
water use, urban expansion, coral reef 
degradation and so forth. Sentinel-2 is another 
satellite operation owned by European space 
agency with up to10 meters of resolution and 13 
different spectral bands.  
 

3. METHODOLOGY 
 
Each methodological procedures involved                  
during the study were performed on Google earth 
engine and QGIS. The detailed methodological 
process of the study is depicted in Fig. 2. 
 

3.1 Image Acquisition and Filtration 
 
In the Google earth engine platform, freely 
available satellite imageries from both sources 
i.e., Landsat-9 and Sentinel-2 were acquired. 
Since the repository provides bulk geospatial 
data, proper filtration is utmost important to 
maintain the quality and useability.  Imported 
imageries of both sources were filtered 
separately by using date (01/01/2023 to 
12/31/2023), region of interest and cloud 
percentage i.e., < 10%.  
 

3.2 Cloud Masking 
 

The cloud containing pixels on satellite imageries 
are crucial elements to be considered during 
earth observatory, atmospheric and 
environmental studies. During atmospheric and 
meteorological studies, cloud contaminated 
pixels provide useful information, however should 
be removed or masked during land surface 
monitoring (Anzalone et al., 2024) to maintain the 

quality of imageries. In this study, "CFMASK" 
and "maskLowQA" functions inbuilt in GEE were 
employed for cloud masking in Landsat-9 and 
Sentinel-2 images respectively.  
 

3.3 Computation of Spectral Indices 
 
Several spectral indices were computed in GEE 
using available bands as described below. 
 
3.3.1 Normalized Difference Vegetation Index 

(NDVI) 
 
The Normalized Difference Vegetation Index 
(NDVI) is a key tool for evaluating vegetation 
health and land use changes using satellite 
images, which helps with sustainable planning. A 
healthier crop canopy will absorb more red light 
and reflect more near-infrared light, resulting in a 
higher NDVI value (Milella & Reina, 2024). 
 
Formula: NDVI is calculated as;  
 

NDVI= NIR – RED                       Equation 1.        
            NIR + RED                             

 
Where, RED refers to the reflectance in the 
visible red spectrum, while NIR denotes the 
reflectance in the near-infrared spectrum. The 
near-infrared band covers wavelengths from 750 
to 1300 nm, the red band ranges from 600 to 700 
nm (Huete et al., 1994). NDVI values range from 
-1 to +1, with higher values indicating denser and 
healthier vegetation, while lower values indicate 
sparse or stressed vegetation (Milella & Reina, 
2024).  
 
3.3.2 Normalized Difference Built-up Index  

(NDBI) 
 
NDBI is a crucial tool for distinguishing built-up 
areas from vegetation and other land cover 
types, using satellite images, providing insights 
into urban growth and patterns (Yasin et al. 
2022). NDBI is determined using the SWIR1 and 
NIR bands of the Landsat sensor (Guha et al., 
2021). 
 

Formula: NDBI is calculated by; 
 

NDBI = 
( 𝑆𝑊𝐼𝑅−𝑁𝐼𝑅)

(𝑆𝑊𝐼𝑅+𝑁𝐼𝑅)
                         Equation 2. 

 

Where, the Normalize Difference Build-up Index 
value lies between -1 to +1. A negative NDBI 
value indicates the presence of water bodies, 
while higher values signify built-up areas. 
Vegetation is associated with lower NDBI values. 
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NDBI values between 0.1 and 0.3 indicate built-
up areas, while values greater than 0.25 suggest 
bare lands (Zha et al., 2003). 
 
3.3.3 Modified Normalized Difference Water 

Index (MNDWI) 
 
Modified Normalized Difference Water Index 
(MNDWI) is a remote sensing tool that enhances 
the delineation of water bodies in satellite 
imagery by effectively distinguishing between 
water, vegetation, and urban areas. MNDWI is 
determined using the GREEN and MIR bands 
instead of a NIR band. 
 
Formula: MNDWI is calculated by; 
 

MNDWI= 
(𝐺𝑟𝑒𝑒𝑛−𝑀𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛+𝑀𝐼𝑅)
                      Equation 3. 

 
Where, it reveals that the average digital number 
of TM band 5, representing middle infrared (MIR) 
radiation and Modified Normalize Difference 
Water Index (NDWI) value lies between -1 to 1. 
Water exhibits higher positive values in the 
MNDWI because it absorbs more mid-infrared 
(MIR) light compared to near-infrared (NIR) light. 
Built-up areas display negative values. According 
to Jensen 2004, Soil and vegetation show 
negative values because soil reflects more                  
mid-infrared (MIR) light than near-infrared (NIR) 
light. 
 
3.3.4 Enhanced Vegetation Index (EVI) 
 
The enhanced vegetative index (EVI) is a 
satellite-derived index used to measure 
vegetation health, density, and productivity. It is 
designed to optimize the vegetation signals and 
improve the sensitivity to high biomass                   
regions, while minimizing background signals 
and atmospheric effects, compared to the             
widely used NDVI and comparatively less 
sensitive to different soil background (Huete et 
al., 2002). 
 

Formula: It is calculated by;  
 

EVI = 2.5 *  
𝑁𝐼𝑅−𝑅𝑒𝑑

(𝑁𝐼𝑅 + 6 ∗ 𝑅𝑒𝑑−7.5 ∗ 𝐵𝑙𝑢𝑒)+1
    Equation 4. 

 

3.3.5 Bare Soil Index (BSI) 
 

The Bare Soil Index (BSI) is a tool used in the 
remote sensing to identify and quantify bare soil 
area in satellite imagery. It accurately classifies 
and differentiate bare soil and other land covers, 
like vegetation, water bodies and built-up areas 
(Nguyen et al., 2021 & Somanathan et al., 2024). 

Formula: It is calculated by; 
 

BSI = 
(SWIR+Red) – (NIR+Blue)

(SWIR+Red) + (NIR+Blue)
         Equation 5.  

 
Where, SWIR= short-waved infrared band and 
NIR= near- infrared band.  Its values range 
between −1 and 1, where, higher value indicates 
a higher change on bare soil and lower value 
indicates a higher vegetation. 

 
3.3.6 Median composite 

 
Compositing is the process of creating a single 
representative image from multiple layers of 
images of a particular region of interest using 
specific mathematical procedure which helps to 
reduce the spatial noise (Roberts et al., 2017). 
Several statistical tools such as mean, median, 
mode, minimum and maximum are available for 
compositing purpose, however, median is 
considered to be more efficient in case of noisy 
geospatial data.  
 

3.4 Creating Training Points 
 
Training datasets were created in the composite 
images of both Landsat-9 and Sentinel-2 using 
polygon tool in GEE. For this purpose, separate 
layer for each LULC classes were created and 
each area was marked accurately, which were 
further used to train the machine learning 
models. The numbers of polygons for crop lands, 
water bodies, forest and shrub lands, built up and 
barren lands were 143, 130, 100, 175 and 60 
respectively. The procedure was adopted as 
suggested by Avci et al., 2023. 
 

3.5 Machine Learning Algorithms 
 
Machine learning models allow us to integrate 
geospatial datasets with machine learning 
algorithms for LULC classification (Zhao et al., 
2024) and developing decision support system. 
However, their performance accuracy is crucially 
important. Although several machine learning 
models are available for classification of 
imageries based on available spectral bands, RF 
and CART models were employed in this study. 

 
3.5.1 Random Forest (RF) Classifier 
 
Random forest is extensively employed in 
classification and regression tasks due to its wide 
application features with high classification 
accuracies. RF is capable of dealing with high-
dimensional datasets, complex decision 
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boundaries and mitigating over-lifting issues 
(Sultana and Inayathulla, 2022). The operating 
mechanisms of RF resembles with trees inside 
the forest. Each tree as a part of whole model, 
makes classification decision based on the 
training datasets which finally becomes the 
prediction of overall classifier (Donges, 2024).  
 
3.5.2 Classification and Regression Tree 

(CART) Classifier 
 
CART developed by Breimen et al., (1984) is a 
simple binary decision-making tool based on if-
then scenarios based on hierarchical decision 
trees (Shetty, 2019). Such type of models splits 
the training data into two groups or subsets 
resembling with nodes of the trees which leads to 
separate branching and is continued until the 
terminal node is formed (Loukika et al., 2021). In 
this model, a single decision tree is formed and 
outputs depends on sample size each 
classification classes. Moreover, high 

dimensionality of datasets may lead to                 
complex tree architecture thereby reduced 
accuracy.  
 
3.5.3 Accuracy assessment  
 
The performance of each machine learning 
models was evaluated with accuracy assessment 
after classification of composite image. For this 
purpose, imageries were divided into training 
(80%) and testing (20%) datasets using point 
geometry in google earth engine. Confusion 
matrix was employed for validation and rating of 
image categorization as suggested by Zhao et 
al., 2024. Following mathematical equations 
were used for calculation of Kappa coefficient, 
Producer accuracy, User accuracy and Overall 
accuracy.  
  

OA = (
𝑃𝑐

𝑃𝑛
) x 100          Equation 6. 

 

 
 

Fig. 2. Methodology of Land Use Land Cover (LULC) classification on Google Earth Engine 
(GEE) platform 
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Fig. 3. Depiction of major satellite indices. a. Normalized Difference Built Index (NDBI) b. 
Normalized Difference Vegetation Index (NDVI) and c. Modified Normalized Difference Water 

Index (MNDWI) using Landsat-9 imageries. d. Normalized Difference Built Index (NDBI) e. 
Normalized Difference Vegetation Index (NDVI) and f. Modified Normalized Difference Water 

Index (MNDWI) using Sentinel-2 imageries 
 
Where, Pc is the correctly classified pixel 
numbers and Pn is the total pixel numbers. 
 

k = 
N ∑ 𝑥𝑖𝑖

𝑟
𝑖=1 − ∑ (𝑥𝑖 + ×𝑥+ 𝑖 )𝑟

𝑖=1

N2 ∑ (𝑥𝑖 +×𝑥+ 𝑖)𝑟
𝑖=1

         Equation 7. 

 
Where, N= total number of observations, r = 
number of rows and columns in error matrix, xii = 
number of observations in row i and column i, xi + 
= marginal total of row i, x+ i = marginal total of 
column i. The producer accuracy was estimated 
by the ratio of correctly categorized pixels to total 
number of pixels for each class. The magnitude 
ranges between – 1 to + 1 where value greater 
than + 0.5 was acceptable as categorization 
(Talukdar et al., 2020, 2020a).   
 

4. RESULTS 
 

4.1 LULC classification by Random 
Forest and Classification Regre-
ssion Tree  

 
Land use land cover scenario of Dang district 
was classified by using two different supervised 
machine learning models i.e., Random Forest 

(RF) and Classification and Regression Tree 
(CART) for comparative analysis of their 
performance. Area distribution of land use land 
cover categories as generated by RF and CART 
models for Landsat-9 and Sentinel-2 are 
described as below (Figs. 4,5,6 and 7).  
 

4.1.1 Landsat-9 
 

The classifications of Dang district using 
Landsat-9 imageries with RF and CART models 
are shown in Figs. 4 & 6. According to the 
classification using RF, 159.62 km2 was 
classified as forest and shrubs, 75.09 km2 as 
crop lands, 52.96 km2 as built up, 14.69 km2 as 
water bodies and 3.50 km2 as barren land. 
Similarly, classification results with CART model 
revealed that 155.74 km2, 69.41 km2, 61.02 km2, 
9.93 km2 and 9.76 km2 of land area were 
classified as forest and shrubs, built up, crop 
lands, barren lands and water bodies 
respectively. 
 

4.1.2 Sentinel-2 
 

The generated results of LULC of Dang district 
with Sentinel-2 imagery, using RF and CART 
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models are shown in Figs. 5 & 7. In case of RF 
model, 154.23 km2 of area was classified as 
forest and shrubs, 76.41 km2 as crop lands, 
40.35 km2 as built up, 22.09 km2 as water bodies 
and 12.79 km2 as barren land. Similarly, in case 
of CART model, classification results indicate 
that 136.19 km2, 68.16 km2, 52.84 km2, 29.76 
km2 and 18.91 km2 of areas were classified as 
forest and shrubs, crop lands, built up, barren 
lands and water bodies respectively. 
 

4.2 Evaluation of Performance 
 
The producer's and user's accuracy of both RF 
and CART model were estimated for each LULC 
categories. The accuracy performance of each 
category is described as below: 
 
4.2.1 Landsat-9 
 
4.2.1.1 Crop lands 
 
Results shows that producer's accuracy and 
user's accuracy of crop lands generated by RF 

model were 98.0% and 94.0% respectively. 
Similarly, producer's and user's accuracy for crop 
lands generated by CART model were 96.0% 
and 100.0% respectively.  
 
4.2.1.2 Water bodies 
 
The PA and UA for water bodies generated by 
RF model were 97.0% and 99.0% while for 
CART, 99.0% and 100.0% respectively.  
 
4.2.1.3 Forest and shrub lands 
 
The PA and UA for forest and shrubs extracted 
by RF was 99.0% and 96.0% while CART results 
for PA and UA for forest and shrubs were 
100.0% and 98.0% respectively.  
 
4.2.1.4 Settlements 
 
The PA and UA for settlement areas generated 
by RF were 95.35% and 93.71% while                   
CART generated 98.6% and 94.41% 
respectively. 

 

 
 

Fig. 4. Land use land cover (LULC) maps of Landsat-9 imageries. a. using RF and b. CART 
models for the year 2023 
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Fig. 5. Land use land cover (LULC) maps of Sentinel-2 imageries. a. using RF and b. CART 
models for the year 2023 

 
4.2.1.5 Barren lands 
 
PA and UA for barren land generated by RF 
were 78.0% and 100.0% whereas CART has 
85.0% and 92.0% respectively. This result 
revealed that CART is the best machine learning 
technique to map barren land using landsat-9 
imageries.  
 
4.2.2 Sentinel-2  
 
4.2.2.1 Crop lands 
 
The PA and UA for crop lands generated by RF 
were 95.0% and 94.0% respectively. The CART 
result for PA and UA of crop lands were 96.0% 
and 98.0% indicating CART as best technique to 
classify the crop lands when coupled with 
Sentinel-2 imageries.  
 
4.2.2.2 Water bodies 
 
The RF classifier has extracted the 98.0% of PA 
and UA accuracy for water bodies using 
Sentinel-2 imageries whereas CART has 
generated PA and UA of 98.0% and 97.0% 
respectively. This result suggests RF as best 
method for classifying water bodies.  
 
4.2.2.3 Forest and shrub lands 
 
The PA and UA for forest and shrubs generated 
by RF were 99.0% and 95.0% respectively 

however, CART has extracted 99.0% and 
100.0% of PA and UA. This also indicates CART 
is the best classifying method for forest and 
shrubs. 
 

4.2.2.4 Settlement lands 
 

The PA and UA for buildup lands extracted by 
RF are 98.0% and 94.0% respectively while 
CART has generated 96.0% and 93.0% of PA 
and UA respectively. This result suggests RF is 
the best method for mapping buildup lands using 
Sentinel-2 imageries.  
 

4.2.2.5 Barren lands 
 

PA and UA for barren land generated by RF are 
71.0% and 93.0% whereas CART produced PA 
and UA of 87.0% and 92.0% using Sentinel-2 
imageries. This result indicates CART is the best 
method for mapping barren lands using Sentinel-
2 imageries.  
 

4.3 Result Validation 
 

The results generated by RF and CART machine 
learning algorithms using Landsat-9 and 
Sentinel-2 imageries were validated by overall 
accuracy (OA) and Kappa coefficient (KC) as 
shown in Table 1. The OA and KC for RF using 
Landsat-9 imageries were 96.0% and 94.0% 
respectively. Similarly, OA and KC of RF 
algorithm for Sentinel-2 imageries were 95.0% 
and 94.0% respectively.  
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Table 1. Accuracy assessment of land use land cover (LULC) classes of satellite imageries using RF and CART 
 

Image Source Classifier Classes Producer Accuracy (%) Users Accuracy 
(%) 

Overall Accuracy (%) Kappa 
Coefficient 

Landsat-9 RF Crop Lands 97.87 93.88 
  

Water Bodies 96.92 99.21 
  

Forest and Shrubs 99.00 96.12 
  

Settlements 95.35 93.71 95.71 0.94 

Barren and Sandy Lands 77.50 100.00 
  

Landsat-9 CART Crop Lands 96.45 100.00   

Water Bodies 99.23 100.00   

Forest and Shrubs 100.00 98.04   

Settlements 98.26 94.41 97.43 0.97 

Barren and Sandy Lands 85.00 91.89   

Sentinel-2 RF Crop Lands 95.20 94.44   

Water Bodies 97.56 98.36   

Forest and Shrubs 98.91 94.79 95.21 0.94 

Settlements 97.56 93.75   

Barren and Sandy Lands 71.05 93.10   

Sentinel-2 CART Crop Lands 96.00 98.36   

Water Bodies 98.37 96.80   

Forest and Shrubs 98.91 100.00 96.41 0.95 

Settlements 95.93 92.91   

Barren and Sandy Lands 86.84 91.67   
Note: RF: Random Forest, CART: Classification and Regression Tree. 
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Fig. 6. Area of each LULC classes estimated by RF and CART model using Landsat-9 
imageries 

 

 
 

Fig. 7. Area of each LULC classes estimated by RF and CART model using Sentinel-2 
imageries 

 
Furthermore, OA and Kc of CART algorithm also 
varied among the satellite image sources. OA 
and Kc of CART for Landsat-9 were 97.0% each 
while 96.0% and 95.0% respectively in case of 
Sentinel-2 imageries. The result validates that 
RF and CART algorithms are applicable for land 
use land cover mapping using both of the 
satellite imageries.  
 

5. DISCUSSION 
 
In this study, two different machine learning 
models i.e., RF and CART were employed to 

classify the land use and land cover of Dang 
district using Landsat-9 and Sentinel-2 data for 
the year 2023. From the classified images, some 
of the forest covered lands were classified as 
crop lands due to reflectance of imageries which 
mislead the classifier. Similar issues during land 
cover classification were also reported by Avci et 
al., 2023 and Loukika et al., 2021.  Such 
misclassification has seen in small shrub areas 
at the middle of forest, which was further 
confirmed by site observation. Additionally, 
barren lands nearby rivers in the imageries were 
misclassified as settlements which might be due
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Fig. 8.  a. Producer accuracy for each LULC classes of Landsat-9 imageries using RF and 
CART. b. User accuracy for each LULC classes of Landsat-9 imageries using RF and CART. c. 
Producer accuracy for each LULC classes of Sentinel-2 imageries using RF and CART. d. User 

accuracy for each LULC classes of Sentinel- imageries using RF and CART 
 
to resembling reflectance characters of sandy 
lands and settlement buildings. The 
misclassification between sandy lands and 
settlement areas was also confirmed by Loukika 
et al., 2021, which particularly happens due to 
seasonality of the water bodies. The coverage 
area of water bodies increases during monsoon 
and drastically reduced during winter and hot 
summer leaving barren sandy river banks. During 
generation of median image using several 
multispectral imageries taken by satellites over 
the year, pixels of river banks resemble with that 
of buildings leading to minor misclassification. 
This reduces the accuracy of the employed 
machine learning models. Moreover, due to 
complex terrain system of the district, shadows 
created by high hills and dense forest in some 
northern and southern parts were classified as 
water bodies even after rigorous masking of 
shadow effects. This indicates that performance 
of machine learning models requires precise 
filtering of satellite imageries considering the 
appropriate sun angle. The performance 
capabilities of CART model were comparatively 

higher than RF either with Landsat-9 or Sentinel-
2 imageries. This might be due to using both 
image sources at same level of resolution i.e., 30 
meters. However, this result contradicts with 
Zhao et al., 2024, who reported the superiority of 
RF model over CART as they used only Sentinel-
2 at the resolution of 10 meters.  Similarly, 
Loukika et al., 2021 also have reported 
contradictory results where RF outperformed 
CART for Landsat-8 and Sentinel-2 imageries at 
30 and 10 meters of resolution which might be 
due using different quality images. The 
performance accuracy classification models 
ultimately depend on number and preciseness of 
training data (Thanh & Kappas, 2018), numbers 
of trees and random expression (Talukdar et al., 
2020a; Talukdar et al., 2020b) which might occur 
in our study due to same number of training 
samples. Moreover, RF and CART machine 
learning models can be used thoroughly to 
create the baseline for policy making for 
sustainable management natural resources, 
urban planning and mitigating the impacts of 
climate change.  
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6. CONCLUSION 
 

Mapping of land use and land cover is utmost 
important for sustainable land monitoring, 
utilization and management. Satellite image 
repositories are assets collected through 
advanced remote sensing technologies such as 
satellites which help governments and related 
stakeholders to consider the past scenarios of 
earth surface before developmental project 
planning. Additionally, machine learning 
algorithms play indispensable role for LULC 
classification based on pixels of imageries. This 
study aims to estimate the performance of two 
different machine learning models (RF and 
CART) for LULC based on Landsat-9 and 
Sentinel-2 imageries on GEE platform. The 
classified images indicate that LULC 
classification is extremely dependent to image 
resolution, quality of images, classifier employed 
and training samples. Results shown that CART 
model was slightly superior in terms of image 
classification under both image sources 
(Landsat-9 and Sentinel-2) at 30 meters of 
resolution as compared to RF. The finding 
suggests image resolution, cloud masking, 
region of interest, selection of classifier, number 
of training samples should be considered for 
precise and reliable LULC results. Further 
investigations of classifiers specially under varied 
image resolution and appropriate shadow 
correction for complex terrain systems are highly 
suggested. In conclusion, GEE is useful tool for 
acquisition, processing of geospatial datasets 
and generating insightful outputs such as land 
use and land cover classification using several 
machine learning algorithms at national or global 
scale.  
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