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Abstract
In this paper, we first prove that the set of zero points of a nonzero K-bianalytic function
f(z) = z̄(k)φ1(z(k)) + φ(z(k)), z ∈ D, is not a region and the set of the second zero points has no
accumulated point. Second, a sufficient and necessary condition is given for a K-bianalytic function to have
a zero arc which has a parameter equation z̄(k) = γ(z(k)) where γ is an analytic function in a region D(k).
Finally, the traits of a K-bianalytic function which has a zero arc, even straight, one of whose ends is a
(c1, c2)−th pole at z = 0, are discussed. Some examples are also shown for our topic.
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1 Introduction
Zhang [1] gave the definition of K-analytic functions. Zhang and his coauthors extended some properties of
analytic functions to K-analytic functions in the theories of integral, Laurent series expansion, residual theorem,
fractional linear transformation, conformal mapping, and so on. See [2]-[8]. Sang and Li [9] studied the mean
value theorems of K-analytic functions. Lin and Xu [10] investigated Riemann problem of (λ, k) bi-analytic
functions.

There are many works to study the properties of bianalytic functions. For example, Zhu, Huang, Liu and Zhu
[11] gave the distribution of nonisolated zero points, properties of mapping, classification of isolated singular
points of bianalytic functions. Fu [12] summarized some properties of analytic and bianalytic functions in the
dissertation for master’s degree. Wang, Huang and Liu [13] researched the properties of bianalytic functions
with zero arc at a pole.

Li and Liu [14] naturally put forward the concept of K-bianalytic functions and investigated Cauchy theorem,
Cauchy integral formula, power series expansion, Fourier series expansion of K-bianalytic functions. Hitherto, a
lot of properties of K-bianalytic functions have not yet been studied and thus it is necessary to continue to look
into the attributes of K-bianalytic functions.

In this paper, we mainly explore the properties of zero points and poles in K-bianalytic functions, which generalize
the corresponding results of [11] and [13] in bianalytic functions.

Definition 1.1. [1] The forms of complex number as x + iky (k ∈ R, k 6= 0) are called K-complex number of
x+ iy, denoted by z(k).

Definition 1.2. [1] Let the function f(z) be defined in a neighborhood of z0. If

lim
∆z(k)→0

∆f

∆z(k)
= lim
z→z0

f(z)− f(z0)

z(k)− z0(k)

exists, then we call that f(z) is K-differential at z0, the limit is the K-derivative of f(z) at z0, denoted by
f ′(k)(z0) or df(z)

z(k)
|z=z0 , i.e.,

f ′(k)(z0) =
df(z)

dz(k)

∣∣∣
z=z0

= lim
z→z0

f(z)− f(z0)

z(k)− z0(k)
.

If f(z) is K-differential at each z ∈ D, then the second K-derivative of f(z) at z0 ∈ D is defined as

f ′′(k)(z0) =
df ′k(z)

dz(k)

∣∣∣
z=z0

= lim
z→z0

f ′k(z)− f ′k(z0)

z(k)− z0(k)
.

Similarly, the nth K-derivative f (n)

(k) (z) can be defined as the same way.

Definition 1.3. [1] If f(z) is K-differential in a region D, we say that f(z) is analytic in D; If f(z) is K-analytic
in a neighborhood of z0, then we say that f(z) is K-analytic at z0.

Definition 1.4. [14] Let the function f(z) have the second partial derivative ∂2f(z)

∂z̄(k)2
in a region D. If ∂

2f(z)

∂z̄(k)2
= 0

for any z ∈ D, then f(z) is called a K- bianalytic function in D.

Denote D(k) = {ξ(k)|ξ ∈ D} if D is a set of C.
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Lemma 1.1. [14, Theorem 1] If function f(z) is a bianalytic function in a region D, then the following is
established

f(z) = z̄(k)φ1(z(k)) + φ(z(k)), z ∈ D

where φ1(z) and φ2(z) are arbitrary analytic functions in D(k).

Similar to the definition of the nth zero point of bianalytic function in [11], the nth zero point of a K-bianalytic
function f(z) is defined as follows.

Definition 1.5. Let f(z) be a K-bianalytic function in a region D, n ≥ 1, z0 ∈ D. If f(z0) = 0 and
∂i+j

∂iz(k)∂j z̄(k)
f(z) = 0 for any 0 < i + j ≤ n − 1, i, j ∈ N and there exists s, t ∈ N such that s + t = n and

∂n

∂sz(k)∂tz̄(k)
f(z) 6= 0, then z0 is called a nth zero point of f(z).

2 The Main Results
The zero points of K-bianalytic function are not definitely isolated. For example, the zero points of

w(z) = z(k)z̄(k)− 1, w(z) = z(k)− z̄(k)

are the ellipse x2 + k2y2 = 1 and the real axis, respectively, but they are not zero functions. Although zero
points of K-bianalytic functions are not non-isolated, the distribution of zero points is not very wide.

Theorem 2.1. Let w(z) be a nonzero K-bianalytic function in a region D. Then the set of zero points is not
a region.

Proof. Let w(z) = 0, z ∈ σ, where σ is a subregion of D. By Lemma 1,

w(z) = z̄(k)φ1(z(k)) + φ2(z(k)),

where φ1(z) and φ2(z) are arbitrary analytic functions in D(k). If φ1(k(z)) = 0 for z ∈ σ, by the isolation of
zero points of K−analytic functions [3], we know that φ1(k(z)) = 0 for z ∈ D and thus φ2(k(z)) = 0 for z ∈ D.
This contradicts the condition of the theorem. If φ1(k(z)) 6≡ 0 for z ∈ σ, then there exists z0 ∈ σ such that
φ1(k(z0)) 6= 0 and thus there is a neighborhood of z0, U(z0) ∈ σ, such that φ1(k(z)) 6= 0 for z ∈ U(z0). Since

w(z) = z̄(k)φ1(z(k)) + φ2(z(k)) = 0, z ∈ σ,

it follows that
z̄(k) = −φ2(z(k))

φ1(z(k))
, z ∈ σ,

which is wrong obviously.

Theorem 2.2. The second zero points of a K-bianalytic function has no accumulated point.

Proof. Suppose that
w(z) = z̄(k)φ1(z(k)) + φ2(z(k)),

where φ1(z) and φ2(z) are arbitrary analytic functions inD(k). If the set of the second zero points zn, n = 1, 2, ...,
has a accumulated point z0 ∈ D. In the light of

w(zn(k)) = φ1(zn(k)) = 0, n = 1, 2, ...,
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we have that

φ2(zn(k)) = 0, n = 1, 2...

Uniqueness of K−analytic function [3] gives that

φ1(z(k)) = φ2(z(k)) = 0, z ∈ D,

which contradicts the fact that w is a nonzero function in D.

Definition 2.1. If the points of an arc γ are zero points or the accumulated points of zero points of a
K−bianalytic function w(z), then γ is called a zero arc of the K−bianalytic function w(z). If w(z) = C
for z ∈ γ where C is a constant, then γ is called a constant arc of the K−bianalytic function w(z).

Theorem 2.3. Let the curve
_
γ have a parameter equation z̄(k) = γ(z(k)) where γ is an analytic function in a

region D(k). Then
_
γ is a zero arc of a K−bianalytic function in D w(z) = z̄(k)φ1(z(k)) + φ2(z(k)) if and only

if
φ2(z(k)) = −γ(z(k))φ1(z(k)), z ∈ D. (2.1)

Proof. Necessity. If
φ1(z(k)) = 0, w(z) = 0, z ∈ _

γ ,

then
φ2(z(k)) = 0, z ∈ _

γ .

Therefore by uniqueness of K−analytic function [3] we know that

w(z) = φ1(z(k)) = φ2(z(k)) = 0, z ∈ D.

If there exists z0 ∈
_
γ such that φ1(z0(k)) 6= 0, z0 ∈

_
γ , then there is a neighborhood of z0, U(z0) ∈ σ, such that

φ1(k(z)) 6= 0 for z ∈ U(z0). If z ∈ γ ∩ U(z0), then

w(z) = z̄(k)φ1(z(k)) + φ2(z(k))

=

(
z̄(k) +

φ2(z(k))

φ1(z(k))

)
φ1(z(k))

=

(
γ(z(k)) +

φ2(z(k))

φ1(z(k))

)
φ1(z(k)).

Thus

γ(z(k)) +
φ2(z(k))

φ1(z(k))
= 0, z0 ∈

_
γ ∩ U(z0).

Uniqueness of K−analytic function [3] yields (2.1).

Sufficiency. Since φ2(z(k)) = −γ(z(k))φ1(z(k)), z̄(k) = γ(z(k)), z ∈ _
γ , we have

z̄(k)φ1(z(k)) + φ2(z(k)) = 0, z ∈ _
γ ,

and thus
w(z) = z̄(k)φ1(z(k)) + φ2(z(k)) = 0, z ∈ _

γ ,

i.e., γ is a zero arc of w.
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Corollary 2.1. Under the assumptions of Theorem 2.3,
_
γ is a constant arc of a K−bianalytic function w(z) =

z̄(k)φ1(z(k)) + φ2(z(k)) if and only if there exists a constant C such that

φ2(z(k))− C = −γ(z(k))φ1(z(k)), z ∈ D.

Example 2.1. Note that z̄(k) = z(k) is the parameter equation of the real axis. Thus by Theorem 2.3 a
K−bianalytic function w(z) which takes a subarc of the real axis to be zero arc must be

w(z) = (z̄(k)− z(k))φ1(z(k)),

where φ1(z) is analytic on the real axis.

Definition 2.2. Let w(z) = z̄(k)φ1(z(k)) + φ2(z(k)) be a K−bianalytic function in a region D, where φ1, φ2

are analytic functions in D(k) and z = a is the ci-th pole of φi, i = 1, 2, respectively (if z = a is a removable
singular point of φi, then z = a is called a 0-th pole of φi). If 0 ≤ ci <∞ (i = 1, 2) and c21 + c22 6= 0, then z = a
is called (c1, c2)-th pole of w(z).

Without loss of generality, we only need to discuss the behavior near z = 0 of w(z). If a 6= 0, under the
transformation z(ζ) = ζ + a, we can similarly investigate the behavior near ζ = 0 of the function

w(z(ζ)) = ζ + a(k)φ1(z(ζ)(k)) + φ2((z(ζ))(k))

= ζ̄(k)φ1(z(ζ)(k)) + [ā(k)φ1(z(ζ)(k)) + φ2((z(ζ))(k))].

Obviously, if φi, i = 1, 2, have ci-th poles of φ(z) at z = 0, respectively, then φi, i = 1, 2, can be expressed by
Laurent expansions as follows:

φ1(z) =
a−c1
zc1

+
a−c1+1

zc1−1
+ ...+ a0 + a1z + ... =

1

zc1
ψ1(z); (2.2)

φ2(z) =
b−c2
zc2

+
b−c2+1

zc2−1
+ ...+ b0 + b1z + ... =

1

zc2
ψ2(z), (2.3)

respectively. If c1 ≥ 1, then a−c1 6= 0 as well as c2 does. The notations of (2.2) and (2.3) are used in the
remaining part.

Theorem 2.4. Let a K−bianalytic function

w(z) = z̄(k)φ1(z(k)) + φ2(z(k))

have (c1, c2)−th pole at z = 0. If there is an arc γ with an end z = 0 such that

w(z) = 0, z ∈ γ\{0}, (2.4)

then
c1 = c2 + 1, |a−c1 | = |b−c2 |.

Proof. By contradiction. If c1 ≤ c2, by (2.2) and (2.3) we have

w(z) =
z̄(k)z(k)c2−c1ψ1(z(k)) + ψ2(z(k))

z(k)c2
, z ∈ γ\{0}.

By (2.4), we have

z̄(k)z(k)c2−c1ψ1(z(k)) + ψ2(z(k)) = 0, z ∈ γ\{0}.
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But
lim
z→0

(
z̄(k)z(k)c2−c1ψ1(z(k)) + ψ2(z(k))

)
= b−c2 6= 0,

which is a contradiction. The similar method is suitable for explaining incorrectness of the case c2 < c1 − 1.
Thus c1 = c2 + 1. In this case we obtain

w(z) =
z̄(k)ψ1(z(k)) + z(k)ψ2(z(k))

z(k)c1
, z ∈ γ\{0},

which yields that

z̄(k)ψ1(z(k)) + z(k)ψ2(z(k)) = 0, z ∈ γ\{0}. (2.5)

So

lim
z→0,z∈γ

∣∣∣∣ z̄(k)

z(k)

∣∣∣∣ = lim
z→0,z∈γ

∣∣∣∣−ψ2(z(k))

ψ1(z(k))

∣∣∣∣ =

∣∣∣∣ b−c2a−c1

∣∣∣∣ = 1.

Theorem 2.5. Let a K−bianalytic function

w(z) = z̄(k)φ1(z(k)) + φ2(z(k))

have a (c1, c2)−th pole at z = 0. Then there exists a line segment η with an end z = 0, such that

w(z) = 0, z ∈ η\{0}, (2.6)

if and only if there exists a neighborhood U(0) of z = 0 such that

φ2(z(k))

φ1(z(k))
= eiθ0z(k), z ∈ U(0),

where θ0 = arg b−c2
a−c1

.

Proof. Sufficiency. If φ2(z(k))
φ1(z(k))

= eiθ0z(k), then there exists a line segment η with an end z = 0, such that (2.7)
holds, where the line segment η satisfies the equation y = 1

k

(
cot θ0

2

)
x for x+ iy ∈ η.

Necessity. By assumptions and the proof of Theorem 2.4, we get c1 = c2 + 1 and (2.5) holds with γ replaced by
η. Let the inclination of the line segment {η(k) = z(k) : z ∈ η} is α. Hence there exists a deleted neighborhood
U0(0) of = 0 such that

ψ2(z(k))

ψ1(z(k))
= −e−2iα, z ∈ η ∩ U0(0).

The fact that ψ2(z(k))
ψ1(z(k))

is K−analytic, uniqueness of K−analytic function and (2.5) implies that there exists a
neighborhood U(0) of z = 0 such that

φ2(z(k))

φ1(z(k))
=
ψ2(z(k))

ψ1(z(k))
z(k) = eiθ0z(k), z ∈ U(0).

Example 2.2. Let K−bianalytic function be given by w(z) =
z̄(k)+a1z(k)+a2z(k)2+...+ajz(k)j+...

z(k)n
, where n ∈ N∗

and ai ∈ C. Then by Theorem 2.5 we know that there exists a line segment η with an end z = 0, such that

w(z) = 0, z ∈ η\{0} (2.7)

if and only if a1 = eiθ, θ ∈ R and ai = 0, i ≥ 2.
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3 Conclusion
In the present paper, we extend some properties of zero points, zero arcs and poles of bianalytic functions to
K-bianalytic functions.
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